ترغب بنشر مسار تعليمي؟ اضغط هنا

Multidimensional persistence modules do not admit a concise representation analogous to that provided by persistence diagrams for real-valued functions. However, there is no obstruction for multidimensional persistent Betti numbers to admit one. Ther efore, it is reasonable to look for a generalization of persistence diagrams concerning those properties that are related only to persistent Betti numbers. In this paper, the persistence space of a vector-valued continuous function is introduced to generalize the concept of persistence diagram in this sense. The main result is its stability under function perturbations: any change in vector-valued functions implies a not greater change in the Hausdorff distance between their persistence spaces.
Persistent Topology studies topological features of shapes by analyzing the lower level sets of suitable functions, called filtering functions, and encoding the arising information in a parameterized version of the Betti numbers, i.e. the ranks of pe rsistent homology groups. Initially introduced by considering real-valued filtering functions, Persistent Topology has been subsequently generalized to a multidimensional setting, i.e. to the case of $R^n$-valued filtering functions, leading to studying the ranks of multidimensional homology groups. In particular, a multidimensional matching distance has been defined, in order to compare these ranks. The definition of the multidimensional matching distance is based on foliating the domain of the ranks of multidimensional homology groups by a collection of half-planes, and hence it formally depends on a subset of $R^ntimesR^n$ inducing a parameterization of these half-planes. It happens that it is possible to choose this subset in an infinite number of different ways. In this paper we show that the multidimensional matching distance is actually invariant with respect to such a choice.
Some new results about multidimensional Topological Persistence are presented, proving that the discontinuity points of a k-dimensional size function are necessarily related to the pseudocritical or special values of the associated measuring function.
Multidimensional persistence studies topological features of shapes by analyzing the lower level sets of vector-valued functions. The rank invariant completely determines the multidimensional analogue of persistent homology groups. We prove that mult idimensional rank invariants are stable with respect to function perturbations. More precisely, we construct a distance between rank invariants such that small changes of the function imply only small changes of the rank invariant. This result can be obtained by assuming the function to be just continuous. Multidimensional stability opens the way to a stable shape comparison methodology based on multidimensional persistence.
The concept of natural pseudo-distance has proven to be a powerful tool for measuring the dissimilarity between topological spaces endowed with continuous real-valued functions. Roughly speaking, the natural pseudo-distance is defined as the infimum of the change of the functions values, when moving from one space to the other through homeomorphisms, if possible. In this paper, we prove the first available result about the existence of optimal homeomorphisms between closed curves, i.e. inducing a change of the function that equals the natural pseudo-distance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا