ترغب بنشر مسار تعليمي؟ اضغط هنا

We study a series of powerful correspondences among new multi-gravity extensions of the Jackiw-Teitelboim model, multi-SYK models and multi-Schwarzian quantum mechanics, in the $rm{(A)dS_{2}/CFT}$ arena. Deploying a $BF$-like formulation of the model , we discuss the counting of the degrees of freedom for some specific classes of multi-gravity potentials, and unveil connections among a variety of apparently different models. Quantization of multi-gravity models can be then achieved from both the Hartle-Hawking no-boundary proposal, the SYK partition function and the spin-foam approaches. We comment on the SYK quantization procedure, and deepen in the appendix the quantization scheme naturally achieved in the $BF$ framework. The new multi-gravity theory hence recovered presents intriguing applications for analogue gravitational models developed for condensed matter physics, including graphene, endowed with defects and high intensity magnetic fields.
An unexpected explanation for neutrino mass, Dark Matter (DM) and Dark Energy (DE) from genuine Quantum Chromodynamics (QCD) of the Standard Model (SM) is proposed here, while the strong CP problem is resolved without any need to account for fundamen tal axions. We suggest that the neutrino sector can be in a double phase in the Universe: i) relativistic neutrinos, belonging to the SM; ii) non-relativistic condensate of Majorana neutrinos. The condensate of neutrinos can provide an attractive alternative candidate for the DM, being in a cold coherent state. We will explain how neutrinos, combining into Cooper pairs, can form collective low-energy degrees of freedom, hence providing a strongly motivated candidate for the QCD (composite) axion.
Air showers, produced by the interaction of energetic cosmic rays with the atmosphere, are an excellent alternative to study particle physics at energies beyond any human-made particle accelerator. For that, it is necessary to identify first the mass composition of the primary cosmic ray (and its energy). None of the existing high energy interaction models have been able to reproduce coherently all air shower observables over the entire energy and zenith angle phase space. This is despite having tried all possible combinations for the cosmic ray mass composition. This proposal outlines a self-consistent strategy to study high energy particle interactions and identify the energy spectra and mass composition of cosmic rays. This strategy involves the participation of different particle accelerators and astrophysics experiments. This is important to cover the entire cosmic ray energy range and a larger phase-space of shower observables to probe the high energy interaction models.
109 - Andrea Addazi 2020
We show that our Universe lives in a topological and non-perturbative vacuum state full of a large amount of hidden quantum hairs, the hairons. We will discuss and elaborate on theoretical evidences that the quantum hairs are related to the gravitati onal topological winding number in vacuo. Thus, hairons are originated from topological degrees of freedom, holographically stored in the de Sitter area. The hierarchy of the Planck scale over the Cosmological Constant (CC) is understood as an effect of a Topological Memory intrinsically stored in the space-time geometry. Any UV quantum destabilizations of the CC are re-interpreted as Topological Phase Transitions, related to the desapparence of a large ensamble of topological hairs. This process is entropically suppressed, as a tunneling probability from the N- to the 0-states. Therefore, the tiny CC in our Universe is a manifestation of the rich topological structure of the space-time. In this portrait, a tiny neutrino mass can be generated by quantum gravity anomalies and accommodated into a large N-vacuum state. We will re-interpret the CC stabilization from the point of view of Topological Quantum Computing. An exponential degeneracy of topological hairs non-locally protects the space-time memory from quantum fluctuations as in Topological Quantum Computers.
We show that a generalized version of the holographic principle can be derived from the Hamiltonian description of information flow within a quantum system that maintains a separable state. We then show that this generalized holographic principle ent ails a general principle of gauge invariance. When this is realized in an ambient Lorentzian space-time, gauge invariance under the Poincare group is immediately achieved. We apply this pathway to retrieve the action of gravity. The latter is cast a la Wilczek through a similar formulation derived by MacDowell and Mansouri, which involves the representation theory of the Lie groups SO(3,2) and SO(4,1).
74 - Andrea Addazi 2020
We rediscuss the main Cosmological Problems as illusions originated from our ignorance of the hidden information holographically stored in {it vacuo}. The Cosmological vacuum state is full of a large number of dynamical quantum hairs, dubbed {it hair ons}, which dominate the Cosmological Entropy. We elaborate on the Cosmological Constant (CC) problem, in both the dynamical and time-constant possibilities. We show that all dangerous quantum mixings between the CC and the Planck energy scales are exponentially suppressed as an entropic collective effect of the hairon environment. As a consequence, the dark energy scale is UV insensitive to any planckian corrections. On the other hand, the inflation scale is similarly stabilized from any radiative effects. In the case of the Dark energy, we show the presence of a holographic entropic attractor, favoring a time variation of $Lambdarightarrow 0$ in future rather than a static CC case; i.e. $w>-1$ Dynamical DE is favored over a CC or a $w<-1$ phantom cosmology. In both the inflation and dark energy sectors, we elaborate on the Trans-Planckian problem, in relation with the recently proposed Trans-Planckian Censorship Conjecture (TCC). We show that the probability for any sub-planckian wavelength modes to survive after inflation is completely negligible as a holographic wash-out mechanism. In other words, the hairons provide for a holographic decoherence of the transplanckian modes in a holographic scrambling time. This avoids the TCC strong bounds on the Inflaton and DE potentials.
We report on a novel phenomenon of particle cosmology, which features specific cosmological phase transitions via quantum tunnelings through multiple vacua. The latter is inspired by the axiverse ideas and enables us to probe the associated new physi cs models through a potential observation of specific patterns in the stochastic gravitational waves background. Multiple vacua may induce the nucleation of co-existing bubbles over the phase transition epoch, hence enhancing the overall process of bubbles nucleation. Our detailed analysis of semi-analytical and numerical solutions to the bounce equations of the path integral in three vacua case has enabled us to determine the existence of three instanton solutions. This new mechanism of cosmological phase transitions clearly predicts a possibly sizeable new source of gravitational waves, with its energy spectrum being featured with particular patterns, which could be probed by the future gravitational wave interferometers.
We investigate the production of primordial Gravitational Waves (GWs) arising from First Order Phase Transitions (FOPTs) associated to neutrino mass generation in the context of type-I and inverse seesaw schemes. We examine both high-scale as well as low-scale variants, with either explicit or spontaneously broken lepton number symmetry $U(1)_L$ in the neutrino sector. In the latter case, a pseudo-Goldstone majoron-like boson may provide a candidate for cosmological dark matter. We find that schemes with softly-broken $U(1)_L$ and with single Higgs-doublet scalar sector lead to either no FOPTs or too weak FOPTs, precluding the detectability of GWs in present or near future measurements. Nevertheless, we found that, in the majoron-like seesaw scheme with spontaneously broken $U(1)_L$ at finite temperatures, one can have strong FOPTs and non-trivial primordial GW spectra which can fall well within the frequency and amplitude sensitivity of upcoming experiments, including LISA, BBO and u-DECIGO. However, GWs observability clashes with invisible Higgs decay constraints from the LHC. A simple and consistent fix is to assume the majoron-like mass to lie above the Higgs-decay kinematical threshold. We also found that the majoron-like variant of the low-scale seesaw mechanism implies a different GW spectrum than the one expected in the high-scale seesaw. This feature will be testable in future experiments. Our analysis shows that GWs can provide a new and complementary portal to test the neutrino mass generation mechanism.
Transformation of neutron to antineutron is a small effect that has not yet been experimentally observed. %cite{Phillips:2014fgb}. In principle, it can occur with free neutrons in the vacuum or with bound neutrons inside the nuclear environment diffe rent for neutrons and antineutrons and for that reason in the latter case it is heavily suppressed. Free neutron transformation also can be suppressed if environmental vector field exists destinguishing neutron from antineutron. We consider here the case of a vector field coupled to $B-L$ charge of the particles ($B-L$ photons) and study a possibility of this to lead to the observable suppression of neutron to antineutron transformation. The suppression effect however can be removed by applying external magnetic field. If the neutron--antineutron oscillation will be discovered in free neutron oscillation experiments, this will imply limits on $B-L$ photon coupling constant and interaction radius few order of magnitudes stronger than present limits form the tests of the equivalence principle. If $n-bar n$ oscillation will be discovered via nuclear instability, but not in free neutron oscillations in corresponding level, this would indicate to the presence of fifth-forces mediated by such baryophotons.
We discuss the gravitino problem in contest of the Exotic see-saw mechanism for neutrinos and Leptogenesis, UV completed by intersecting D-branes Pati-Salam models. In the Exotic see-saw model, supersymmetry is broken at high scales $M_{SUSY}>10^{9}, rm GeV$ and this seems in contradiction with gravitino bounds from inflation and baryogenesis. However, if gravitino is the Lightest Stable Supersymmetric Particle, it will not decay into other SUSY particles, avoiding the gravitino problem and providing a good Cold Dark Matter. Gravitini are Super Heavy Dark Particles and they can be produced by non-adiabatic expansion during inflation. Intriguingly, from bounds on the correct abundance of dark matter, we also constrain the neutrino sector. We set a limit on the exotic instantonic coupling of $<10^{-2}div 10^{-3}$. This also sets important constrains on the Calabi-Yau compactifications and on the string scale. This model strongly motivates very high energy DM indirect detection of neutrini and photons of $10^{11}div 10^{13}, rm GeV$: gravitini can decay on them in a cosmological time because of soft R-parity breaking effective operators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا