ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing new physics with multi-vacua quantum tunnelings beyond standard model through gravitational waves

150   0   0.0 ( 0 )
 نشر من قبل Zihan Zhou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a novel phenomenon of particle cosmology, which features specific cosmological phase transitions via quantum tunnelings through multiple vacua. The latter is inspired by the axiverse ideas and enables us to probe the associated new physics models through a potential observation of specific patterns in the stochastic gravitational waves background. Multiple vacua may induce the nucleation of co-existing bubbles over the phase transition epoch, hence enhancing the overall process of bubbles nucleation. Our detailed analysis of semi-analytical and numerical solutions to the bounce equations of the path integral in three vacua case has enabled us to determine the existence of three instanton solutions. This new mechanism of cosmological phase transitions clearly predicts a possibly sizeable new source of gravitational waves, with its energy spectrum being featured with particular patterns, which could be probed by the future gravitational wave interferometers.

قيم البحث

اقرأ أيضاً

The possibility that primordial black holes (PBHs) represent all of the dark matter (DM) in the Universe and explain the coalescences of binary black holes detected by LIGO/Virgo has attracted a lot of attention. PBHs are generated by the enhancement of scalar perturbations which inevitably produce the induced gravitational waves (GWs). We calculate the induced GWs up to the third-order correction which not only enhances the amplitude of induced GWs, but also extends the cutoff frequency from $2k_*$ to $3k_*$. Such effects of the third-order correction lead to an around $10%$ increase of the signal-to-noise ratio (SNR) for both LISA and pulsar timing array (PTA) observations, and significantly widen the mass range of PBHs in the stellar mass window accompanying detectable induced GWs for PTA observations including IPTA, FAST and SKA. On the other hand, the null detections of the induced GWs by LISA and PTA experiments will exclude the possibility that all of the DM is comprised of PBHs and the GW events detected by LIGO/Virgo are generated by PBHs.
In many generalized models of gravity, perfect fluids in cosmology give rise to gravitational slip. Simultaneously, in very broad classes of such models, the propagation of gravitational waves is altered. We investigate the extent to which there is a one-to-one relationship between these two properties in three classes of models with one extra degree of freedom: scalar (Horndeski and beyond), vector (Einstein-Aether) and tensor (bimetric). We prove that in bimetric gravity and Einstein-Aether, it is impossible to dynamically hide the gravitational slip on all scales whenever the propagation of gravitational waves is modified. Horndeski models are much more flexible, but it is nonetheless only possible to hide gravitational slip dynamically when the action for perturbations is tuned to evolve in time toward a divergent kinetic term. These results provide an explicit, theoretical argument for the interpretation of future observations if they disfavoured the presence of gravitational slip.
We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contribution s from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.
The next generation of instruments designed to measure the polarization of the cosmic microwave background (CMB) will provide a historic opportunity to open the gravitational wave window to the primordial Universe. Through high sensitivity searches f or primordial gravitational waves, and tighter limits on the energy released in processes like phase transitions, the CMB polarization data of the next decade has the potential to transform our understanding of the laws of physics underlying the formation of the Universe.
We calculate the production of the gravitational waves from a double inflation model with lattice simulations. Between the two inflationary stages, gravitational waves with a characteristic frequency are produced by fluctuations of the scalar fields enhanced through parametric resonance. The wavelength of the produced gravitational waves gets extra redshift during the second inflationary stage and it can be in the observable range for the direct gravitational wave detectors. It is found that there is a possibility for the produced gravitational waves to be detected in the planned experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا