ترغب بنشر مسار تعليمي؟ اضغط هنا

We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of non-interacting particles, experiencing elastic collisions with a heavy and periodically moving wall under the influence of a constant gravitational field. The dynamics lead to a mixed phase space where chaotic orbits have a free path to move along the velocity axis, presenting a normal diffusion behavior. Depending on the control parameter, one can observe the presence of featured resonances, known as accelerator modes, that lead to a ballistic growth of velocity. Through statistical and numerical analysis of the velocity of the particle, we are able to characterize a transition between the two regimes, where transport properties were used to characterize the scenario of the ballistic regime. Also, in an analysis of the probability of an orbit to reach an accelerator mode as a function of the velocity, we observe a competition between the normal and ballistic transport in the mid range velocity.
The behavior of the average velocity, its deviation and average squared velocity are characterized using three techniques for a 1-D dissipative impact system. The system -- a particle, or an ensemble of non interacting particles, moving in a constant gravitation field and colliding with a varying platform -- is described by a nonlinear mapping. The average squared velocity allows to describe the temperature for an ensemble of particles as a function of the parameters using: (i) straightforward numerical simulations; (ii) analytically from the dynamical equations; (iii) using the probability distribution function. Comparing analytical and numerical results for the three techniques, one can check the robustness of the developed formalism, where we are able to estimate numerical values for the statistical variables, without doing extensive numerical simulations. Also, extension to other dynamical systems is immediate, including time dependent billiards.
Some dynamical properties of non interacting particles in a bouncer model are described. They move under gravity experiencing collisions with a moving platform. The evolution to steady state is described in two cases for dissipative dynamics with ine lastic collisions: (i) for large initial energy; (ii) for low initial energy. For (i) we prove an exponential decay while for (ii) a power law marked by a changeover to the steady state is observed. A relation for collisions and time is obtained and allows us to write relevant observables as temperature and entropy as function of either number of collisions and time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا