ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an algorithm for compiling arbitrary unitaries into a sequence of gates native to a quantum processor. As accurate CNOT gates are hard for the foreseeable Noisy- Intermediate-Scale Quantum devices era, our A* inspired algorithm attempts to minimize their count, while accounting for connectivity. We discuss the search strategy together with metrics to expand the solution frontier. For a workload of circuits with complexity appropriate for the NISQ era, we produce solutions well within the best upper bounds published in literature and match or exceed hand tuned implementations, as well as other existing synthesis alternatives. In particular, when comparing against state-of-the-art available synthesis packages we show 2.4x average (up to 5.3x) reduction in CNOT count. We also show how to re-target the algorithm for a different chip topology and native gate set, while obtaining similar quality results. We believe that empirical tools like ours can facilitate algorithmic exploration, gate set discovery for quantum processor designers, as well as providing useful optimization blocks within the quantum compilation tool-chain.
We present a facility for direct measurements at low and very low energies typical for nuclear astrophysics (NA). The facility consists of a small and robust tandem accelerator where irradiations are made, and an ultra-low background laboratory locat ed in a salt mine where very low radio-activities can be measured. Both belong to Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH) but are situated 120 km apart. Their performances are shown using a few cases where they are used. We argue that this facility is competitive for the study of nuclear reactions induced by alpha particles and by light ions at energies close or down into the Gamow windows. A good case study was the 13C+12C fusion reaction, where the proton evaporation channel leads to an activity with T1/2 = 15 h, appropriate for samples transfer to the salt mine. Measurements were done using the thick target method down into the Gamow window for energies from Ecm=2.2 MeV, which is the lowest energy ever reached for this reaction, up to 5.3 MeV, using 13C beams from the 3 MV tandetron. The activation method allowed us to determine a cross section of the order of 100 pb. Reactions induced by alphas were also measured. Proton induced resonant reactions were used to calibrate the accelerator terminal voltage. Some results of the experiemnts characterizing the assembly are sown and discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا