ترغب بنشر مسار تعليمي؟ اضغط هنا

We used the 1.4 GHz NVSS to study radio sources in two color-selected QSO samples: a volume-limited sample of 1313 QSOs defined by M_i < -23 in the redshift range 0.2 < z < 0.45 and a magnitude-limited sample of 2471 QSOs with m_r < 18.5 and 1.8 < z < 2.5. About 10% were detected above the 2.4 mJy NVSS catalog limit and are powered primarily by AGNs. The space density of the low-redshift QSOs evolves as rho proportional to (1+z)^6. In both redshift ranges the flux-density distributions and luminosity functions of QSOs stronger than 2.4 mJy are power laws, with no features to suggest more than one kind of radio source. Extrapolating the power laws to lower luminosities predicts the remaining QSOs should be extremely radio quiet, but they are not. Most were detected statistically on the NVSS images with median peak flux densities S_p(mJy/beam) ~ 0.3 and 0.05 in the low- and high-redshift samples, corresponding to 1.4 GHz spectral luminosities log[L(W/Hz)] ~ 22.7$ and 24.1, respectively. We suggest that the faint radio sources are powered by star formation at rates ~20 M_sun per year in the moderate luminosity (median M_i ~ -23.4) low-redshift QSOs and ~500 M_sun per year in the very luminous (M_i} ~ -27.5) high-redshift QSOs. Such luminous starbursts [ log(L / L_sun) ~ 11.2 and 12.6, respectively] are consistent with quasar mode accretion in which cold gas flows fuel both AGN and starburst.
Despite decades of study, it remains unclear whether there are distinct radio-loud and radio-quiet populations of quasi-stellar objects (QSOs). Early studies were limited by inhomogeneous QSO samples, inadequate sensitivity to probe the radio-quiet p opulation, and degeneracy between redshift and luminosity for flux-density-limited samples. Our new 6 GHz EVLA observations allow us for the first time to obtain nearly complete (97%) radio detections in a volume-limited color-selected sample of 179 QSOs more luminous than M_i = -23 from the Sloan Digital Sky Survey (SDSS) Data Release Seven in the narrow redshift range 0.2 < z < 0.3. The dramatic improvement in radio continuum sensitivity made possible with the new EVLA allows us, in 35 minutes of integration, to detect sources as faint as 20 microJy, or log[L_6 (W/Hz)] ~ 21.5 at z = 0.25, well below the radio luminosity, log[L_6 (W/Hz)] ~ 22.5, that separates star-forming galaxies from radio-loud active galactic nuclei (AGNs) driven by accretion onto a super-massive black hole. We calculate the radio luminosity function (RLF) for these QSOs using three constraints: (a) EVLA 6 GHz observations for log[L_6 (W/Hz)] < 23.5, (b) NRAO-VLA Sky Survey (NVSS) observations for log[L_6 (W/Hz)] > 23.5, and (c) the total number of SDSS QSOs in our volume-limited sample. We show that the RLF can be explained as a superposition of two populations, dominated by AGNs at the bright end and star formation in the QSO host galaxies at the faint end.
(Abridged) We construct a catalog of radio sources detected by the GB6 (6 cm), FIRST and NVSS (20 cm), and WENSS (92 cm) radio surveys, and the SDSS optical survey. The 2.7 million entries in the publicly-available master catalog are comprised of the closest three FIRST to NVSS matches (within 30 arcsec) and vice-versa, and unmatched sources from each survey. Entries are supplemented by data from the other radio and optical surveys, where available. We perform data analysis a ~3000 deg^2 region of sky where the surveys overlap, which contains 140,000 NVSS-FIRST sources, of which 64,000 are detected by WENSS and 12,000 by GB6. About one third of each sample is detected by SDSS. An automated classification method based on 20 cm fluxes defines three radio morphology classes: complex, resolved, and compact. Radio color-magnitude- morphology diagrams for these classes show structure suggestive of strong underlying physical correlations. Complex and resolved sources tend to have a steep spectral slope (alpha ~ -0.8) that is nearly constant from 6 to 92 cm, while the compact class contains a significant number of flat-spectrum (alpha ~ 0) sources. In the optically-detected sample, quasars dominate the flat-spectrum compact sources while steep-spectrum and resolved objects contain substantial numbers of both quasars and galaxies. Differential radio counts of quasars and galaxies are similar at bright flux levels (>100 mJy at 20 cm), while at fainter levels the quasar counts are significantly reduced below galaxy counts. The optically-undetected sample is strongly biased toward steep-spectrum sources. In samples of quasars and galaxies with SDSS spectra, we find that radio properties such as spectral slope, morphology, and radio loudness are correlated with optical color and luminosity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا