ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze seven year and nine year WMAP temperature maps for signatures of three finite flat topologies M_0=T^3, M_1=T^2 x R^1, and M_2=S^1 x R^2. We use Monte-Carlo simulations with the Feldman-Cousins method to obtain confidence intervals for the size of the topologies considered. We analyze the V, W, and Q frequency bands along with the ILC map and find no significant difference in the results. The 95.5% confidence level lower bound on the size of the topology is 1.5L_0 for M_0, 1.4L_0 for M_1, and 1.1L_0 for M_2, where L_0 is the radius of the last scattering surface. Our results agree very well with the recently released results from the Planck temperature data. We show that the likelihood function is not Gaussian in the size, and therefore simulations are important for obtaining accurate bounds on the size. We then introduce the formalism for including polarization data in the analysis. The improvement that we find from WMAP polarization maps is small because of the high level of instrumental noise, but our forecast for Planck maps shows a much better improvement on the lower bound for L. For the M_0 topology we expect an improvement on the lower bound of L from 1.7L_0 to 1.9L_0 at 95.5% confidence level. Using both polarization and temperature data is important because it tests the hypothesis that deviations in the TT spectrum at small l originate in the primordial perturbation spectrum.
We place limits on semiclassical fluctuations that might be present in the primordial perturbation spectrum. These can arise if some signatures of pre-inflationary features survive the expansion, or could be created by whatever mechanism ends inflati on. We study two possible models for such remnant fluctuations, both of which break the isotropy of CMB on large scales. We first consider a semiclassical fluctuation in one Fourier mode of primordial perturbations. The second scenario we analyze is a semiclassical Gaussian bump somewhere in space. These models are tested with the seven-year WMAP data using a Markov Chain Monte Carlo Bayesian analysis, and we place limits on these fluctuations. The upper bound for the amplitude of a fluctuation in a single Fourier mode is a<=10^(-4), while for the Gaussian bump a<=10^(-3).
The primordial non-Gaussian parameter fNL has been shown to be scale-dependent in several models of inflation with a variable speed of sound. Starting from a simple ansatz for a scale-dependent amplitude of the primordial curvature bispectrum for two common phenomenological models of primordial non-Gaussianity, we perform a Fisher matrix analysis of the bispectra of the temperature and polarization of the Cosmic Microwave Background (CMB) radiation and derive the expected constraints on the parameter nNG that quantifies the running of fNL(k) for current and future CMB missions such as WMAP, Planck and CMBPol. We find that CMB information alone, in the event of a significant detection of the non-Gaussian component, corresponding to fNL = 50 for the local model and fNL = 100 for the equilateral model of non-Gaussianity, is able to determine nNG with a 1-sigma uncertainty of Delta nNG = 0.1 and Delta nNG = 0.3, respectively, for the Planck mission. In addition, we consider a Fisher matrix analysis of the galaxy power spectrum to determine the expected constraints on the running parameter nNG for the local model and of the galaxy bispectrum for the equilateral model from future photometric and spectroscopic surveys. We find that, in both cases, large-scale structure observations should achieve results comparable to or even better than those from the CMB, while showing some complementarity due to the different distribution of the non-Gaussian signal over the relevant range of scales. Finally, we compare our findings to the predictions on the amplitude and running of non-Gaussianity of DBI inflation, showing how the constraints on a scale-dependent fNL(k) translate into constraints on the parameter space of the theory.
We present evidence for the detection of primordial non-Gaussianity of the local type (fNL), using the temperature information of the Cosmic Microwave Background (CMB) from the WMAP 3-year data. We employ the bispectrum estimator of non-Gaussianity d escribed in (Yadav et al. 2007) which allows us to analyze the entirety of the WMAP data without an arbitrary cut-off in angular scale. Using the combined information from WMAPs two main science channels up to lmax=750 and the conservative Kp0 foreground mask we find 27 < fNL < 147 at 95% C.L., with a central value of fNL=87. This corresponds to a rejection of fNL=0 at more than 99.5% significance. We find that this detection is robust to variations in lmax, frequency and masks, and that no known foreground, instrument systematic, or secondary anisotropy explains our signal while passing our suite of tests. We explore the impact of several analysis choices on the stated significance and find 2.5 sigma for the most conservative view. We conclude that the WMAP 3-year data disfavors canonical single field slow-roll inflation.
In our recent paper (Yadav et al. 2007) we described a fast cubic (bispectrum) estimator of the amplitude of primordial non-Gaussianity of local type, f_{NL}, from a combined analysis of the Cosmic Microwave Background (CMB) temperature and E-polariz ation observations. In this paper we generalize the estimator to deal with a partial sky coverage as well as inhomogeneous noise. Our generalized estimator is still computationally efficient, scaling as O(N^3/2) compared to the O(N^5/2) scaling of the brute force bispectrum calculation for sky maps with N pixels. Upcoming CMB experiments are expected to yield high-sensitivity temperature and E-polarization data. Our generalized estimator will allow us to optimally utilize the combined CMB temperature and E-polarization information from these realistic experiments, and to constrain primordial non-Gaussianity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا