ترغب بنشر مسار تعليمي؟ اضغط هنا

Limits on Semiclassical Fluctuations in the Primordial Universe

40   0   0.0 ( 0 )
 نشر من قبل Grigor Aslanyan
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We place limits on semiclassical fluctuations that might be present in the primordial perturbation spectrum. These can arise if some signatures of pre-inflationary features survive the expansion, or could be created by whatever mechanism ends inflation. We study two possible models for such remnant fluctuations, both of which break the isotropy of CMB on large scales. We first consider a semiclassical fluctuation in one Fourier mode of primordial perturbations. The second scenario we analyze is a semiclassical Gaussian bump somewhere in space. These models are tested with the seven-year WMAP data using a Markov Chain Monte Carlo Bayesian analysis, and we place limits on these fluctuations. The upper bound for the amplitude of a fluctuation in a single Fourier mode is a<=10^(-4), while for the Gaussian bump a<=10^(-3).

قيم البحث

اقرأ أيضاً

Primordial magnetic field (PMF) is one of the feasible candidates to explain observed large-scale magnetic fields, for example, intergalactic magnetic fields. We present a new mechanism that brings us information about PMFs on small scales based on t he abundance of primordial black holes (PBHs). The anisotropic stress of the PMFs can act as a source of the super-horizon curvature perturbation in the early universe. If the amplitude of PMFs is sufficiently large, the resultant density perturbation also has a large amplitude, and thereby, the PBH abundance is enhanced. Since the anisotropic stress of the PMFs is consist of the square of the magnetic fields, the statistics of the density perturbation follows the non-Gaussian distribution. Assuming Gaussian distributions and delta-function type power spectrum for PMFs, based on a Monte-Carlo method, we obtain an approximate probability density function of the density perturbation, and it is an important piece to relate the amplitude of PMFs with the abundance of PBHs. Finally, we place the strongest constraint on the amplitude of PMFs as a few hundred nano-Gauss on $10^{2};{rm Mpc}^{-1} leq kleq 10^{18};{rm Mpc}^{-1}$ where the typical cosmological observations never reach.
Fluctuations in sky maps of the galaxy redshifts, dubbed as angular redshift fluctuations (ARF), contain precise information about the growth rate of structures and the nature of gravity in the Universe. Specifically, ARF constrain the combination of cosmological parameters $H/H_0,fsigma_8(z)$, while being an intrinsically tomographic probe and largely insensitive to many observational systematic errors, all this without requiring the assumption of any redshift-to-distance relation under a given fiducial cosmology. We present the first cosmological constraints derived from ARF by using BOSS LOWZ+CMASS DR12 galaxy samples, obtaining 7%-accurate constraints on $H/H_0 fsigma_8(z)$ at more than 20 redshifts over the range $z in [0.26,0.72]$. Our best-fitting value is $10%$ larger, but compatible at the $1.4sigma$ level, than the $Lambda$CDM expectation set by {it Planck} observations of the Cosmic Microwave Background (CMB) radiation. Our tomographic measurements, combined with these CMB data, provides one of the strongest constraints on the gravity index $gamma$, $gamma=0.44^{+0.09}_{-0.07}$, which lies within $2sigma$ from the prediction of General Relativity ($gamma_{rm GR}simeq 0.55$).
If primordial black holes (PBHs) form directly from inhomogeneities in the early Universe, then the number in the mass range $10^5 -10^{12}M_{odot}$ is severely constrained by upper limits to the $mu$ distortion in the cosmic microwave background (CM B). This is because inhomogeneities on these scales will be dissipated by Silk damping in the redshift interval $5times 10^4lesssim zlesssim2times 10^6$. If the primordial fluctuations on a given mass scale have a Gaussian distribution and PBHs form on the high-$sigma$ tail, as in the simplest scenarios, then the $mu$ constraints exclude PBHs in this mass range from playing any interesting cosmological role. Only if the fluctuations are highly non-Gaussian, or form through some mechanism unrelated to the primordial fluctuations, can this conclusion be obviated.
We present a pipeline for characterizing and constraining initial conditions in cosmology via persistent homology. The cosmological observable of interest is the cosmic web of large scale structure, and the initial conditions in question are non-Gaus sianities (NG) of primordial density perturbations. We compute persistence diagrams and derived statistics for simulations of dark matter halos with Gaussian and non-Gaussian initial conditions. For computational reasons and to make contact with experimental observations, our pipeline computes persistence in sub-boxes of full simulations and simulations are subsampled to uniform halo number. We use simulations with large NG ($f_{rm NL}^{rm loc}=250$) as templates for identifying data with mild NG ($f_{rm NL}^{rm loc}=10$), and running the pipeline on several cubic volumes of size $40~(textrm{Gpc/h})^{3}$, we detect $f_{rm NL}^{rm loc}=10$ at $97.5%$ confidence on $sim 85%$ of the volumes for our best single statistic. Throughout we benefit from the interpretability of topological features as input for statistical inference, which allows us to make contact with previous first-principles calculations and make new predictions.
We investigate primordial black hole formation in the matter-dominated phase of the Universe, where nonspherical effects in gravitational collapse play a crucial role. This is in contrast to the black hole formation in a radiation-dominated era. We a pply the Zeldovich approximation, Thornes hoop conjecture, and Doroshkevichs probability distribution and subsequently derive the production probability $beta_{0}$ of primordial black holes. The numerical result obtained is applicable even if the density fluctuation $sigma$ at horizon entry is of the order of unity. For $sigmall 1$, we find a semi-analytic formula $beta_{0}simeq 0.05556 sigma^{5}$, which is comparable with the Khlopov-Polnarev formula. We find that the production probability in the matter-dominated era is much larger than that in the radiation-dominated era for $sigmalesssim 0.05$, while they are comparable with each other for $sigmagtrsim 0.05$. We also discuss how $sigma$ can be written in terms of primordial curvature perturbations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا