ترغب بنشر مسار تعليمي؟ اضغط هنا

We present resolved [CI] line intensities of 18 nearby galaxies observed with the SPIRE FTS spectrometer on the Herschel Space Observatory. We use these data along with resolved CO line intensities from $J_mathrm{up} = 1$ to 7 to interpret what phase of the interstellar medium the [CI] lines trace within typical local galaxies. A tight, linear relation is found between the intensities of the CO(4-3) and [CI](2-1) lines; we hypothesize this is due to the similar upper level temperature of these two lines. We modeled the [CI] and CO line emission using large velocity gradient models combined with an empirical template. According to this modeling, the [CI](1-0) line is clearly dominated by the low-excitation component. We determine [CI] to molecular mass conversion factors for both the [CI](1-0) and [CI](2-1) lines, with mean values of $alpha_{mathrm{[CI](1-0)}} = 7.3$ M$_{mathrm{sun}}$ K$^{-1}$ km$^{-1}$ s pc$^{-2}$ and $alpha_{mathrm{[CI](2-1)}} = 34 $ M$_{mathrm{sun}}$ K$^{-1}$ km$^{-1}$ s pc$^{-2}$ with logarithmic root-mean-square spreads of 0.20 and 0.32 dex, respectively. The similar spread of $alpha_{mathrm{[CI](1-0)}}$ to $alpha_{mathrm{CO}}$ (derived using the CO(2-1) line) suggests that [CI](1-0) may be just as good a tracer of cold molecular gas as CO(2-1) in galaxies of this type. On the other hand, the wider spread of $alpha_{mathrm{[CI](2-1)}}$ and the tight relation found between [CI](2-1) and CO(4-3) suggest that much of the [CI](2-1) emission may originate in warmer molecular gas.
We present images from the Solar Blind Channel on HST that resolve hundreds of far ultraviolet (FUV) emitting stars in two ~1 kpc$^2$ interarm regions of the grand-design spiral M101. The luminosity functions of these stars are compared with predicte d distributions from simple star formation histories, and are best reproduced when the star formation rate has declined recently (past 10-50 Myr). This pattern is consistent with stars forming within spiral arms and then streaming into the interarm regions. We measure the diffuse FUV surface brightness after subtracting all of the detected stars, clusters and background galaxies. A residual flux is found for both regions which can be explained by a mix of stars below our detection limit and scattered FUV light. The amount of scattered light required is much larger for the region immediately adjacent to a spiral arm, a bright source of FUV photons.
We present observations of $^{13}$CO(1-0) in 17 Combined Array for Research in Millimeter Astronomy (CARMA) Atlas3D early-type galaxies (ETGs), obtained simultaneously with $^{12}$CO(1-0) observations. The $^{13}$CO in six ETGs is sufficiently bright to create images. In these 6 sources, we do not detect any significant radial gradient in the $^{13}$CO/$^{12}$CO ratio between the nucleus and the outlying molecular gas. Using the $^{12}$CO channel maps as 3D masks to stack the $^{13}$CO emission, we are able to detect 15/17 galaxies to $>3sigma$ (and 12/17 to at least 5$sigma$) significance in a spatially integrated manner. Overall, ETGs show a wide distribution of $^{13}$CO/$^{12}$CO ratios, but Virgo cluster and group galaxies preferentially show a $^{13}$CO/$^{12}$CO ratio about 2 times larger than field galaxies, although this could also be due to a mass dependence, or the CO spatial extent ($R_{rm CO}/R_{rm e}$). ETGs whose gas has a morphologically-settled appearance also show boosted $^{13}$CO/$^{12}$CO ratios. We hypothesize that this variation could be caused by (i) the extra enrichment of gas from molecular reprocessing occurring in low-mass stars (boosting the abundance of $^{13}$C to $^{12}$C in the absence of external gas accretion), (ii) much higher pressure being exerted on the midplane gas (by the intracluster medium) in the cluster environment than in isolated galaxies, or (iii) all but the densest molecular gas clumps being stripped as the galaxies fall into the cluster. Further observations of $^{13}$CO in dense environments, particularly of spirals, as well as studies of other isotopologues, should be able to distinguish between these hypotheses.
We use the near--infrared Brgamma hydrogen recombination line as a reference star formation rate (SFR) indicator to test the validity and establish the calibration of the {it Herschel} PACS 70 mu m emission as a SFR tracer for sub--galactic regions i n external galaxies. Brgamma offers the double advantage of directly tracing ionizing photons and of being relatively insensitive to the effects of dust attenuation. For our first experiment, we use archival CFHT Brgamma and Ks images of two nearby galaxies: NGC,5055 and NGC,6946, which are also part of the {it Herschel} program KINGFISH (Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel). We use the extinction corrected Brgamma emission to derive the SFR(70) calibration for H{sc ii} regions in these two galaxies. A comparison of the SFR(70) calibrations at different spatial scales, from 200 pc to the size of the whole galaxy, reveals that about 50% of the total 70mu m emission is due to dust heated by stellar populations that are unrelated to the current star formation. We use a simple model to qualitatively relate the increase of the SFR(70) calibration coefficient with decreasing region size to the star formation timescale. We provide a calibration for an unbiased SFR indicator that combines the observed Halpha with the 70 mu m emission, also for use in H{sc ii} regions. We briefly analyze the PACS 100 and 160 mu m maps and find that longer wavelengths are not as good SFR indicators as 70mu m, in agreement with previous results. We find that the calibrations show about 50% difference between the two galaxies, possibly due to effects of inclination.
We study the global efficiency of star formation in high resolution hydrodynamical simulations of gas discs embedded in isolated early-type and spiral galaxies. Despite using a universal local law to form stars in the simulations, we find that the ea rly-type galaxies are offset from the spirals on the large-scale Kennicutt relation, and form stars 2 to 5 times less efficiently. This offset is in agreement with previous results on morphological quenching: gas discs are more stable against star formation when embedded in early-type galaxies due to the lower disc self-gravity and increased shear. As a result, these gas discs do not fragment into dense clumps and do not reach as high densities as in the spiral galaxies. Even if some molecular gas is present, the fraction of very dense gas (above 10^4 cm-3) is significantly reduced, which explains the overall lower star formation efficiency. We also analyse a sample of local early-type and spiral galaxies, measuring their CO and HI surface densities and their star formation rates as determined by their non-stellar 8um emission. As predicted by the simulations, we find that the early-type galaxies are offset from the Kennicutt relation compared to the spirals, with a twice lower efficiency. Finally, we validate our approach by performing a direct comparison between models and observations. We run a simulation designed to mimic the stellar and gaseous properties of NGC524, a lenticular galaxy, and find a gas disc structure and global star formation rate in good agreement with the observations. Morphological quenching thus seems to be a robust mechanism, and is also consistent with other observations of a reduced star formation efficiency in early-type galaxies in the COLD GASS survey. This lower efficiency of star formation is not enough to explain the formation of the whole Red Sequence, but can contribute to the reddening of some galaxies.
Combining Ha and IRAC images of the nearby spiral galaxy NGC 628, we find that between 30-43% of its 8um dust emission is not related to recent star formation. Contributions from dust heated by young stars are separated by identifying HII regions in the Ha map and using these areas as a mask to determine the 8um dust emission that must be due to heating by older stars. Corrections are made for sub-detection-threshold HII regions, photons escaping from HII regions and for young stars not directly associated to HII regions (i.e. 10-100 Myr old stars). A simple model confirms this amount of 8um emission can be expected given dust and PAH absorption cross-sections, a realistic star-formation history, and the observed optical extinction values. A Fourier power spectrum analysis indicates that the 8um dust emission is more diffuse than the Ha emission (and similar to observed HI), supporting our analysis that much of the 8um-emitting dust is heated by older stars. The 8um dust-to-Ha emission ratio declines with galactocentric radius both within and outside of HII regions, probably due to a radial increase in disk transparency. In the course of this work, we have also found that intrinsic diffuse Ha fractions may be lower than previously thought in galaxies, if the differential extinction between HII regions and diffuse regions is taken into account.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا