ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovering the physical requirements for meeting the indefinite permittivity in natural material as well as proposing a new natural hyperbolic media offer a possible route to significantly improve our knowledge and ability to confine and controlling light in optoelectronic devices. We demonstrate the hyperbolicity in a class of materials with hexagonal P6/mmm and P6$_{3}$/mmc layered crystal structures and its physical origin is thoroughly investigated. By utilizing density functional theory and solving the Bethe-Salpeter equation (BSE), we find that the layered crystal structure and symmetry imposed constraints in Li$_{3}$N gives rise to an exceedingly strong anisotropy in optical responses along in- and out-of-plane directions of the crystals making it a natural hyperbolic in a broad spectral range from the visible spectrum to the ultraviolet. More excitingly, the hyperbolicity relation to anisotropic interband absorption in addition to the impressive dependency of the conduction band to the lattice constant along the out-of-plane direction provide the hyperbolicity tunability in these hexagonal structures under strain, doping, and alloying. Our findings not only suggest a large family of real hexagonal compounds as a unique class of materials for realization of the highly tunable broad band hyperbolicity but also offers an approach to search for new hyperbolic
Materials with tunable topological features, simple crystal structure and flexible synthesis, are in extraordinary demand towards technological exploitation of unique properties of topological nodal points. The controlled design of the lattice geomet ry of light elements is determined by utilizing density functional theory and the effective Hamiltonian model together with the symmetry analysis. This provides an intriguing venue for reasonably achieving various distinct types of novel fermions. We, therefore, show that a nodal line (type-I and II), Dirac fermion, and triple point (TP) fermionic excitation can potentially appear as a direct result of a band inversion in group-I nitrides with $alpha$-Li$_{rm 3}$N-type crystal structure. The imposed strain is exclusively significant for these compounds, and it invariably leads to the considerable modification of the nodal line type. Most importantly, a type-II nodal loop can be realized in the system under strain. These unique characteristics make $alpha$-Li$_{rm 3} $N-type crystal structure an ideal playground to achieve various types of novel fermions well-suited for technological applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا