ترغب بنشر مسار تعليمي؟ اضغط هنا

Natural hyperbolicity in the layered hexagonal crystal structure

93   0   0.0 ( 0 )
 نشر من قبل Ali Ebrahimian
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Discovering the physical requirements for meeting the indefinite permittivity in natural material as well as proposing a new natural hyperbolic media offer a possible route to significantly improve our knowledge and ability to confine and controlling light in optoelectronic devices. We demonstrate the hyperbolicity in a class of materials with hexagonal P6/mmm and P6$_{3}$/mmc layered crystal structures and its physical origin is thoroughly investigated. By utilizing density functional theory and solving the Bethe-Salpeter equation (BSE), we find that the layered crystal structure and symmetry imposed constraints in Li$_{3}$N gives rise to an exceedingly strong anisotropy in optical responses along in- and out-of-plane directions of the crystals making it a natural hyperbolic in a broad spectral range from the visible spectrum to the ultraviolet. More excitingly, the hyperbolicity relation to anisotropic interband absorption in addition to the impressive dependency of the conduction band to the lattice constant along the out-of-plane direction provide the hyperbolicity tunability in these hexagonal structures under strain, doping, and alloying. Our findings not only suggest a large family of real hexagonal compounds as a unique class of materials for realization of the highly tunable broad band hyperbolicity but also offers an approach to search for new hyperbolic

قيم البحث

اقرأ أيضاً

Hexagonal layered crystalline materials, such as graphene, boron nitride, tungsten sulfate, and so on, have attracted enormous attentions, due to their unique combination of atomistic structures and superior thermal, mechanical, and physical properti es. Making use of mechanical buckling is a promising route to control their structural morphology and thus tune their physical properties, giving rise to many novel applications. In this paper, we employ finite element analysis (FEA), molecular dynamic (MD) simulations and continuum modeling to study the mechanical buckling of a column made of layered crystalline materials with the crystal layers parallel to the longitudinal axis. It is found that the mechanical buckling exhibits a gradual transition from a bending mode to a shear mode of instability with the reduction of slenderness ratio. As the slenderness ratio approaches to zero, the critical buckling strain {epsilon}cr converges to a finite value that is much smaller than the materials mechanical strength, indicating that it is realizable under appropriate experimental conditions. Such a mechanical buckling mode is anomalous and counter-intuitive. The critical buckling strain {epsilon}cr predicted by our continuum mechanics model agrees very well with the results from the FEA and MD simulations for a group of typical hexagonal layered crystalline materials. MD simulations on graphite indicate the continuum mechanics model is applicable down to a scale of 20 nm. This theoretical model also reveals that a high degree of elastic anisotropy is the origin for the anomalous mechanical buckling of a column made of layered crystalline materials in the absence of structural slenderness. This study provides avenues for engineering layered crystalline materials in various nano-materials and nano-devices via mechanical buckling.
We have investigated the crystal structure of LaOBiPbS3 using neutron diffraction and synchrotron X-ray diffraction. From structural refinements, we found that the two metal sites, occupied by Bi and Pb, were differently surrounded by the sulfur atom s. Calculated bond valence sum suggested that one metal site was nearly trivalent and the other was nearly divalent. Neutron diffraction also revealed site selectivity of Bi and Pb in the LaOBiPbS3 structure. These results suggested that the crystal structure of LaOBiPbS3 can be regarded as alternate stacks of the rock-salt-type Pb-rich sulfide layers and the LaOBiS2-type Bi-rich layers. From band calculations for an ideal (LaOBiS2)(PbS) system, we found that the S bands of the PbS layer were hybridized with the Bi bands of the BiS plane at around the Fermi energy, which resulted in the electronic characteristics different from that of LaOBiS2. Stacking the rock-salt type sulfide (chalcogenide) layers and the BiS2-based layered structure could be a new strategy to exploration of new BiS2-based layered compounds, exotic two-dimensional electronic states, or novel functionality.
The calculated quasiparticle band structure of bulk hexagonal boron nitride using the all-electron GW approximation shows that this compound is an indirect-band-gap semiconductor. The solution of the Bethe-Salpeter equation for the electron-hole two- particle Green function has been used to compute its optical spectra and the results are found in excellent agreement with available experimental data. A detailed analysis is made for the excitonic structures within the band gap and found that the excitons belong to the Frenkel class and are tightly confined within the layers. The calculated exciton binding energy is much larger than that obtained by Watanabe {it et al} using a Wannier model to interpret their experimental results and assuming that h-BN is a direct-band-gap semiconductor.
We have synthesized a new layered oxychalcogenide La2O2Bi3AgS6. From synchrotron X-ray diffraction and Rietveld refinement, the crystal structure of La2O2Bi3AgS6 was refined using a model of the P4/nmm space group with a = 4.0644(1) {AA} and c = 19.4 12(1) {AA}, which is similar to the related compound LaOBiPbS3, while the interlayer bonds (M2-S1 bonds) are apparently shorter in La2O2Bi3AgS6. The tunneling electron microscopy (TEM) image confirmed the lattice constant derived from Rietveld refinement (c ~ 20 {AA}). The electrical resistivity and Seebeck coefficient suggested that the electronic states of La2O2Bi3AgS6 are more metallic than those of LaOBiS2 and LaOBiPbS3. The insertion of a rock-salt-type chalcogenide into the van der Waals gap of BiS2-based layered compounds, such as LaOBiS2, will be a useful strategy for designing new layered functional materials in the layered chalcogenide family.
Bulk hexagonal boron nitride (hBN) is a highly nonlinear natural hyperbolic material that attracts major attention in modern nanophotonics applications. However, studies of its optical properties in the visible part of the spectrum and quantum emitte rs hosted by bulk hBN have not been reported to date. In this work we study the emission properties of hBN crystals in the red spectral range using sub-bandgap optical excitation. Quantum emission from defects is observed at room temperature and characterized in detail. Our results advance the use of hBN in quantum nanophotonics technologies and enhance our fundamental understanding of its optical properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا