ﻻ يوجد ملخص باللغة العربية
Discovering the physical requirements for meeting the indefinite permittivity in natural material as well as proposing a new natural hyperbolic media offer a possible route to significantly improve our knowledge and ability to confine and controlling light in optoelectronic devices. We demonstrate the hyperbolicity in a class of materials with hexagonal P6/mmm and P6$_{3}$/mmc layered crystal structures and its physical origin is thoroughly investigated. By utilizing density functional theory and solving the Bethe-Salpeter equation (BSE), we find that the layered crystal structure and symmetry imposed constraints in Li$_{3}$N gives rise to an exceedingly strong anisotropy in optical responses along in- and out-of-plane directions of the crystals making it a natural hyperbolic in a broad spectral range from the visible spectrum to the ultraviolet. More excitingly, the hyperbolicity relation to anisotropic interband absorption in addition to the impressive dependency of the conduction band to the lattice constant along the out-of-plane direction provide the hyperbolicity tunability in these hexagonal structures under strain, doping, and alloying. Our findings not only suggest a large family of real hexagonal compounds as a unique class of materials for realization of the highly tunable broad band hyperbolicity but also offers an approach to search for new hyperbolic
Hexagonal layered crystalline materials, such as graphene, boron nitride, tungsten sulfate, and so on, have attracted enormous attentions, due to their unique combination of atomistic structures and superior thermal, mechanical, and physical properti
We have investigated the crystal structure of LaOBiPbS3 using neutron diffraction and synchrotron X-ray diffraction. From structural refinements, we found that the two metal sites, occupied by Bi and Pb, were differently surrounded by the sulfur atom
The calculated quasiparticle band structure of bulk hexagonal boron nitride using the all-electron GW approximation shows that this compound is an indirect-band-gap semiconductor. The solution of the Bethe-Salpeter equation for the electron-hole two-
We have synthesized a new layered oxychalcogenide La2O2Bi3AgS6. From synchrotron X-ray diffraction and Rietveld refinement, the crystal structure of La2O2Bi3AgS6 was refined using a model of the P4/nmm space group with a = 4.0644(1) {AA} and c = 19.4
Bulk hexagonal boron nitride (hBN) is a highly nonlinear natural hyperbolic material that attracts major attention in modern nanophotonics applications. However, studies of its optical properties in the visible part of the spectrum and quantum emitte