ترغب بنشر مسار تعليمي؟ اضغط هنا

55 - Lucas Labadie 2014
The Herbig Ae star HD 139614 is a group-Ib object, which featureless SED indicates disk flaring and a possible pre-transitional evolutionary stage. We present mid- and near-IR interferometric results collected with MIDI, AMBER and PIONIER with the ai m of constraining the spatial structure of the 0.1-10 AU disk region and assess its possible multi-component structure. A two-component disk model composed of an optically thin 2-AU wide inner disk and an outer temperature-gradient disk starting at 5.6 AU reproduces well the observations. This is an additional argument to the idea that group-I HAeBe inner disks could be already in the disk-clearing transient stage. HD 139614 will become a prime target for mid-IR interferometric imaging with the second-generation instrument MATISSE of the VLTI.
A new class of pre-main sequence objects has been recently identified as pre-transitional disks. They present near-infrared excess coupled to a flux deficit at about 10 microns and a rising mid-infrared and far-infrared spectrum. These features sugge st a disk structure with inner and outer dust components, separated by a dust-depleted region (or gap). We here report on the first interferometric observations of the disk around the Herbig Ae star HD 139614. Its infrared spectrum suggests a flared disk, and presents pre-transitional features,namely a substantial near-infrared excess accompanied by a dip around 6 microns and a rising mid-infrared part. In this framework, we performed a study of the spectral energy distribution (SED) and the mid-infrared VLTI/MIDI interferometric data to constrain thespatial structure of the inner dust disk region and assess its possibly multi-component structure. We based our work on a temperature-gradient disk model that includes dust opacity. While we could not reproduce the SED and interferometric visibilities with a one-component disk, a better agreement was obtained with a two-component disk model composed of an optically thin inner disk extending from 0.22 to 2.3 au, a gap, and an outer temperature-gradient disk starting at 5.6 au. Therefore, our modeling favors an extended and optically thin inner dust component and in principle rules out the possibility that the near-infrared excess originates only from a spatially confined region. Moreover, the outer disk is characterized by a very steep temperature profile and a temperature higher than 300 K at its inner edge. This suggests the existence of a warm component corresponding to a scenario where the inner edge of the outer disk is directly illuminated by the central star. This is an expected consequence of the presence of a gap, thus indicative of a pre-transitional structure.
We describe the first determination of thermal properties and size of the M-type asteroid (16) Psyche from interferometric observations obtained with the Mid-Infrared Interferometric Instrument (MIDI) of the Very Large Telescope Interferometer. We us ed a thermophysical model to interpret our interferometric data. Our analysis shows that Psyche has a low macroscopic surface roughness. Using a convex 3-D shape model obtained by Kaasalainen et al. (2002, Icarus 159, 369-395), we derived a volume-equivalent diameter for (16) Psyche of 247 +- 25 km or 238 +- 24 km, depending on the possible values of surface roughness. Our corresponding thermal inertia estimates are 133 or 114 J.m-2.s-0.5.K-1, with a total uncertainty estimated to 40 J.m-2.s-0.5.K-1. They are among the highest thermal inertia values ever measured for an asteroid of this size. We consider this as a new evidence of a metal-rich surface for the asteroid (16) Psyche.
Nulling interferometry aims to detect faint objects close to bright stars. Its principle is to produce a destructive interference along the line-of-sight so that the stellar flux is rejected, while the flux of the off-axis source can be transmitted. In practice, various instrumental perturbations can degrade the nulling performance. Any imperfection in phase, amplitude, or polarization produces a spurious flux that leaks to the interferometer output and corrupts the transmitted off-axis flux. One of these instrumental pertubations is the crosstalk phenomenon, which occurs because of multiple parasitic reflections inside transmitting optics, and/or diffraction effects related to beam propagation along finite size optics. It can include a crosstalk of a beam with itself, and a mutual crosstalk between different beams. This can create a parasitic interference pattern, which degrades the intrinsic transmission map - or intensity response - of the interferometer. In this context, we describe how this instrumental effect impairs the performance of a Bracewell interferometer. A simple formalism is developed to derive the corresponding modified intensity response of the interferometer, as a function of the two parameters of interest: the crosstalk level (or contamination rate) and the phase shift between the primary and secondary - parasitic - beams. We then apply our mathematical approach to a few scientific cases, both analytically and using the GENIEsim simulation software, adapted to handle coherent crosstalk. Our results show that a coherent crosstalk level of about 1% implies a 20% drop of the SNR at most. Careful attention should thus be paid to reduce the crosstalk level inside an interferometric instrument and ensure an instrumental stability that provides the necessary sensitivity through calibration procedures.
We describe interferometric observations of the asteroid (41) Daphne in the thermal infrared obtained with the Mid-Infrared Interferometric Instrument (MIDI) of the Very Large Telescope Interferometer (VLTI). We derived the size and the surface therm al properties of (41) Daphne by means of a thermophysical model (TPM), which is used for the interpretation of interferometric data for the first time. From our TPM analysis, we derived a volume equivalent diameter for (41) Daphne of 189 km, using a non-convex 3-D shape model derived from optical lightcurves and adaptive optics images (B. Carry, private communication). On the other hand, when using the convex shape of Kaasalainen et al. (2002. Icarus 159, 369-395) in our TPM analysis, the resulting volume equivalent diameter of (41) Daphne is between 194 and 209 km, depending on the surface roughness. The shape of the asteroid is used as an a priori information in our TPM analysis. No attempt is made to adjust the shape to the data. Only the size of the asteroid and its thermal parameters (albedo, thermal inertia and roughness) are adjusted to the data. We estimated our model systematic uncertainty to be of 4% and of 7% on the determination of the asteroid volume equivalent diameter depending on whether the non-convex or the convex shape is used, respectively. In terms of thermal properties, we derived a value of the surface thermal inertia smaller than 50 J m-2 s-0.5 K-1 and preferably in the range between 0 and 30 J m-2 s-0.5 K-1. Our TPM analysis also shows that Daphne has a moderate macroscopic surface roughness.
72 - Alexis Matter 2010
The giant planets of our solar system possess envelopes consisting mainly of hydrogen and helium but are also significantly enriched in heavier elements relatively to our Sun. In order to better constrain how these heavy elements have been delivered, we quantify the amount accreted during the so-called late heavy bombardment, at a time when planets were fully formed and planetesimals could not sink deep into the planets. On the basis of the Nice model, we obtain accreted masses (in terrestrial units) equal to $0.15pm0.04 rm,M_oplus$ for Jupiter, and $0.08 pm 0.01 rm,M_oplus$ for Saturn. For the two other giant planets, the results are found to depend mostly on whether they switched position during the instability phase. For Uranus, the accreted mass is $0.051 pm 0.003 rm,M_oplus$ with an inversion and $0.030 pm 0.001 rm,M_oplus$ without an inversion. Neptune accretes $0.048 pm 0.015 rm,M_oplus$ in models in which it is initially closer to the Sun than Uranus, and $0.066 pm 0.006 rm,M_oplus$ otherwise. With well-mixed envelopes, this corresponds to an increase in the enrichment over the solar value of $0.033 pm 0.001$ and $0.074 pm 0.007$ for Jupiter and Saturn, respectively. For the two other planets, we find the enrichments to be $2.1 pm 1.4$ (w/ inversion) or $1.2 pm 0.7$ (w/o inversion) for Uranus, and $2.0 pm 1.2$ (w/ inversion) or $2.7 pm 1.6$ (w/o inversion) for Neptune. This is clearly insufficient to explain the inferred enrichments of $sim 4$ for Jupiter, $sim 7$ for Saturn and $sim 45$ for Uranus and Neptune.
The observable quantities in optical interferometry, which are the modulus and the phase of the complex visibility, may be corrupted by parasitic fringes superimposed on the genuine fringe pattern. These fringes are due to an interference phenomenon occurring from straylight effects inside an interferometric instrument. We developed an analytical approach to better understand this phenomenon when straylight causes crosstalk between beams. We deduced that the parasitic interference significantly affects the interferometric phase and thus the associated observables including the differential phase and the closure phase. The amount of parasitic flux coupled to the piston between beams appears to be very influential in this degradation. For instance, considering a point-like source and a piston ranging from $lambda/500$ to $lambda/5$ in L band ($lambda=3.5:mu$m), a parasitic flux of about 1% of the total flux produces a parasitic phase reaching at most one third of the intrinsic phase. The piston, which can have different origins (instrumental stability, atmospheric perturbations, ...), thus amplifies the effect of parasitic interference. According to specifications of piston correction in space or at ground level (respectively $lambda/500approx 2$nm and $lambda/30approx 100$nm), the detection of hot Jupiter-like planets, one of the most challenging aims for current ground-based interferometers, limits parasitic radiation to about 5% of the incident intensity. This was evaluated by considering different types of hot Jupiter synthetic spectra. Otherwise, if no fringe tracking is used, the detection of a typical hot Jupiter-like system with a solar-like star would admit a maximum level of parasitic intensity of 0.01% for piston errors equal to $lambda$/15. If the fringe tracking specifications are not precisely observed, it thus appears that the allowed level of parasitic intensity dramatically decreases and may prevent the detection. In parallel, the calibration of the parasitic phase by a reference star, at this accuracy level, seems very difficult. Moreover, since parasitic phase is an object-dependent quantity, the use of a hypothetical phase abacus, directly giving the parasitic phase from a given parasitic flux level, is also impossible. Some instrumental solutions, implemented at the instrument design stage for limiting or preventing this parasitic interference, appears to be crucial and are presented in this paper.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا