ترغب بنشر مسار تعليمي؟ اضغط هنا

131 - Xiaofeng Wang 2013
Type Ia supernovae (SNe Ia) have been used as excellent standardizable candles for measuring cosmic expansion, but their progenitors are still elusive. Here we report that the spectral diversity of SNe Ia is tied to their birthplace environments. We find that those with high-velocity ejecta are substantially more concentrated in the inner and brighter regions of their host galaxies than are normal-velocity SNe Ia. Furthermore, the former tend to inhabit larger and more-luminous hosts. These results suggest that high-velocity SNe Ia likely originate from relatively younger and more metal-rich progenitors than normal-velocity SNe Ia, and are restricted to galaxies with substantial chemical evolution.
We present an analysis of the chemical abundances of the star Tycho G in the direction of the remnant of supernova (SN) 1572, based on Keck high-resolution optical spectra. The stellar parameters of this star are found to be those of a G-type subgian t with $T_{mathrm{eff}} = 5900 pm 100$ K, loggl $ = 3.85 pm 0.30$ dex, and $mathrm{[Fe/H]} = -0.05 pm 0.09$. This determination agrees with the stellar parameters derived for the star in a previous survey for the possible companion star of SN 1572 (Ruiz-Lapuente et al. 2004). The chemical abundances follow the Galactic trends, except for Ni, which is overabundant relative to Fe, $[{rm Ni/Fe}] $ $=$ 0.16 $pm$ 0.04. Co is slightly overabundant (at a low significance level). These enhancements in Fe-peak elements could have originated from pollution by the supernova ejecta. We find a surprisingly high Li abundance for a star that has evolved away from the main sequence. We discuss these findings in the context of companion stars of supernovae.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا