ﻻ يوجد ملخص باللغة العربية
Type Ia supernovae (SNe Ia) have been used as excellent standardizable candles for measuring cosmic expansion, but their progenitors are still elusive. Here we report that the spectral diversity of SNe Ia is tied to their birthplace environments. We find that those with high-velocity ejecta are substantially more concentrated in the inner and brighter regions of their host galaxies than are normal-velocity SNe Ia. Furthermore, the former tend to inhabit larger and more-luminous hosts. These results suggest that high-velocity SNe Ia likely originate from relatively younger and more metal-rich progenitors than normal-velocity SNe Ia, and are restricted to galaxies with substantial chemical evolution.
We study the observables of 158 relatively normal Type Ia supernovae (SNe Ia) by dividing them into two groups in terms of the expansion velocity inferred from the absorption minimum of the Si II 6355 line in their spectra near B-band maximum brightn
The standard model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present --- as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supern
Analysis of the statistical properties of exoplanets, together with those of their host stars, are providing a unique view into the process of planet formation and evolution. In this paper we explore the properties of the mass distribution of giant p
Type Ia supernovae are bright stellar explosions distinguished by standardizable light curves that allow for their use as distance indicators for cosmological studies. Despite their highly successful use in this capacity, the progenitors of these eve
Type Ia supernovae are bright stellar explosions thought to occur when a thermonuclear runaway consumes roughly a solar mass of degenerate stellar material. These events produce and disseminate iron-peak elements, and properties of their light curves