ترغب بنشر مسار تعليمي؟ اضغط هنا

Galactic cosmic rays are believed to be accelerated at supernova remnants. However, whether supernova remnants can be Pevatrons is still very unclear. In this work we argue that PeV cosmic rays can be accelerated during the early phase of a supernova blast wave expansion in dense red supergiant winds. We solve in spherical geometry a system combining a diffusive-convection equation which treats cosmic-ray dynamics coupled to magnetohydrodynamics to follow gas dynamics. The fast shock expanding in a dense ionized wind is able to trigger the fast non-resonant streaming instability over day timescales, and energizes cosmic-rays even under the effect of p-p losses. We find that such environments make the blast wave a Pevatron, although the maximum energy depends on various parameters such as the injection rate and mass-loss rate of the winds. Multi-PeV energies can be reached if the progenitor mass loss rates are of the order of $10^{-3}$ Msun yr$^{-1}$. It has been recently invoked that, prior to the explosion, hydrogen rich massive stars can produce enhanced mass loss rates. These enhanced rates would then favor the production of a Pevatron phase in early times after the shock breakout.
82 - Marco Padovani 2021
Recently, there has been an increased interest in the study of the generation of low-energy cosmic rays (CRs; < 1 TeV) in shocks situated on the surface of a protostar or along protostellar jets. These locally accelerated CRs offer an attractive expl anation for the high levels of non-thermal emission and ionisation rate, $zeta$, observed close to these sources. The high $zeta$ observed in some protostellar sources is generally attributed to shock-generated UV photons. The aim of this article is to show that when synchrotron emission and a high $zeta$ are measured in the same spatial region, a locally shock-accelerated CR flux is sufficient to explain both phenomena. We assume that relativistic particles are accelerated according to the first-order Fermi acceleration mechanism and compute $zeta$ and the non-thermal emission at cm wavelengths. We then apply our model to the star-forming region OMC-2 FIR 3/FIR 4. Using a Bayesian analysis, we constrain the parameters of the model and estimate the spectral indices of the non-thermal radio emission. We demonstrate that the local CR acceleration model makes it possible to simultaneously explain the synchrotron emission along the HOPS 370 jet within the FIR 3 region and $zeta$ observed near the FIR 4 protocluster. Our model constrains the magnetic field strength (~250-450$~mu$G), its turbulent component (~20-40$~mu$G), and the jet velocity in the shock reference frame for the three non-thermal sources of the HOPS 370 jet (~350-1000 km s$^{-1}$). Beyond the modelling of the OMC-2 FIR 3/FIR 4 system, we show how the combination of continuum observations at cm wavelengths and molecular transitions is a powerful new tool for the analysis of star-forming regions: these two types of observations can be simultaneously interpreted by invoking only the presence of locally accelerated CRs, without having to resort to shock-generated UV photons.
Synchrotron radio emission from non-relativistic jets powered by massive protostars has been reported, indicating the presence of relativistic electrons and magnetic fields of strength ~0.3-5 mG. We study diffusive shock acceleration and magnetic fie ld amplification in protostellar jets with speeds between 300 and 1500 km/s. We show that the magnetic field in the synchrotron emitter can be amplified by the non-resonant hybrid (Bell) instability excited by the cosmic-ray streaming. By combining the synchrotron data with basic theory of Bell instability we estimate the magnetic field in the synchrotron emitter and the maximum energy of protons. Protons can achieve maximum energies in the range 0.04-0.65 TeV and emit gamma rays in their interaction with matter fields. We predict detectable levels of gamma rays in IRAS 16547-5247 and IRAS 16848-4603. The gamma ray flux can be significantly enhanced by the gas mixing due to Rayleigh-Taylor instability. The detection of this radiation by the Fermi satellite in the GeV domain and the forthcoming Cherenkov Telescope Array at higher energies may open a new window to study the formation of massive stars, as well as diffusive acceleration and magnetic field amplification in shocks with velocities of about 1000 km/s.
Some core-collapse supernovae are likely to be efficient cosmic-ray accelerators up to the PeV range, and therefore, to potentially play an important role in the overall Galactic cosmic-ray population. The TeV gamma-ray domain can be used to study pa rticle acceleration in the multi-TeV and PeV range. This motivates the study of the detectability of such supernovae by current and future gamma-ray facilities. The gamma-ray emission of core-collapse supernovae strongly depends on the level of the two-photon annihilation process: high-energy gamma-ray photons emitted at the expanding shock wave following the supernova explosion can interact with soft photons from the supernova photosphere through the pair production channel, thereby strongly suppressing the flux of gamma rays leaving the system. In the case of SN 1993J, whose photospheric and shock-related parameters are well measured, we calculate the temporal evolution of the expected gamma-ray attenuation by accounting for the temporal and geometrical effects. We find the attenuation to be of about $10$ orders of magnitude in the first few days after the SN explosion. The probability of detection of a supernova similar to SN 1993J with the Cherenkov Telescope Array is highest if observations are performed either earlier than 1 day, or later than 10 days after the explosion, when the gamma-ray attenuation decreases to about $2$ orders of magnitude.
We use particle-in-magnetohydrodynamics-cells to model particle acceleration and magnetic field amplification in a high Mach, parallel shock in three dimensions and compare the result to 2-D models. This allows us to determine whether 2-D simulations can be relied upon to yield accurate results in terms of particle acceleration, magnetic field amplification and the growth rate of instabilities. Our simulations show that the behaviour of the gas and the evolution of the instabilities are qualitatively similar for both the 2-D and 3-D models, with only minor quantitative differences that relate primarily to the growth speed of the instabilities. The main difference between 2-D and 3-D models can be found in the spectral energy distributions (SEDs) of the non-thermal particles. The 2-D simulations prove to be more efficient, accelerating a larger fraction of the particles and achieving higher velocities. We conclude that, while 2-D models are sufficient to investigate the instabilities in the gas, their results have to be treated with some caution when predicting the expected SED of a given shock.
Core collapse supernovae (CCSNe) produce fast shocks which pervade the dense circum-stellar medium (CSM) of the stellar progenitor. Cosmic rays (CRs) if accelerated at these shocks can induce the growth of electromagnetic fluctuations in the foreshoc k medium. In this study, using a self-similar description of the shock evolution, we calculate the growth timescales of CR-driven instabilities. We select a sample of nearby core collapse radio supernova of type II and Ib/Ic. From radio data we infer the parameters which enter in the calculation of the instability growth times. We find that extended IIb SNe shocks can trigger fast intra day instabilities, strong magnetic field amplification and CR acceleration. In particular, the non-resonant streaming instability can contribute to about 50% of the magnetic field intensity deduced from radio data. This results in the acceleration of CRs in the range 1-10 PeV within a few days after the shock breakout. In order to produce strong magnetic field amplification and CR acceleration a fast shocks pervading a dense CSM is necessary. In that aspect IIn supernovae~are also good candidates. But a detailed modeling of the blast wave dynamics coupled with particle acceleration is mandatory for this class of object before providing any firm conclusions. Finally, we find that the trans-relativistic object SN 2009bb even if it produces more modest magnetic field amplification can accelerate CRs up to 2-3 PeV within 20 days after the outburst.
We present simulations of magnetized astrophysical shocks taking into account the interplay between the thermal plasma of the shock and supra-thermal particles. Such interaction is depicted by combining a grid-based magneto-hydrodynamics description of the thermal fluid with particle in cell techniques devoted to the dynamics of supra-thermal particles. This approach, which incorporates the use of adaptive mesh refinement features, is potentially a key to simulate astrophysical systems on spatial scales that are beyond the reach of pure particle-in-cell simulations. We consider in this study non-relativistic shocks with various Alfvenic Mach numbers and magnetic field obliquity. We recover all the features of both magnetic field amplification and particle acceleration from previous studies when the magnetic field is parallel to the normal to the shock. In contrast with previous particle-in-cell-hybrid simulations, we find that particle acceleration and magnetic field amplification also occur when the magnetic field is oblique to the normal to the shock but on larger timescales than in the parallel case. We show that in our simulations, the supra-thermal particles are experiencing acceleration thanks to a pre-heating process of the particle similar to a shock drift acceleration leading to the corrugation of the shock front. Such oscillations of the shock front and the magnetic field locally help the particles to enter the upstream region and to initiate a non-resonant streaming instability and finally to induce diffuse particle acceleration.
Massive stars are mainly found in stellar associations. These massive star clusters occur in the heart of giant molecular clouds. The strong stellar wind activity in these objects generates large bubbles and induces collective effects that could acce lerate particles up to high energy and produce gamma rays. The best way to input an acceleration origin to the stellar wind interaction in massive stellar cluster is to observe young massive star clusters in which no supernova explosion has occurred yet. This work aims to constrain the part of stellar wind mechanical energy that is converted into energetic particles using the sensitivity of the ongoing Fermi/LAT instrument. This work further provides detailed predictions of expected gamma-ray fluxes in the view of the on-set of the next generation of imaging atmospheric Cherenkov telescopes. A one-zone model where energetic particles are accelerated by repeated interactions with strong supersonic shocks occurring in massive star clusters was developed. The particle escape from the star cluster and subsequent interaction with the surrounding dense material and magnetic fields of the HII region was computed. We applied this model to a selection of eight embedded star clusters constricted by existing observations. We evaluated the gamma-ray signal from each object, combining both leptonic and hadronic contributions. We searched for these emissions in the Fermi/LAT observations in the energy range from 3 to 300 GeV and compared them to the sensitivity of the Cherenkov Telescope Array. No significant gamma-ray emission from these star clusters has been found. Less than 10% of stellar wind luminosities are supplied to the relativistic particles. Some clusters even show acceleration efficiency of less than 1%. The CTA would be able to detect gamma-ray emission from several clusters in the case of an acceleration efficiency of close to 1%.
This work has the main objective to provide a detailed investigation of cosmic ray propagation in magnetohydrodynamic turbulent fields generated by forcing the fluid velocity field at large scales. It provides a derivation of the particle mean free p ath dependences in terms of the turbulence level described by the Alfvenic Mach number and in terms of the particle rigidity. We use an upgrade version of the magnetohydrodynamic code {tt RAMSES} which includes a forcing module and a kinetic module and solve the Lorentz equation for each particle. The simulations are performed using a 3 dimension periodical box in the test-particle and magnetostatic limits. The forcing module is implemented using an Ornstein-Uhlenbeck process. An ensemble average over a large number of particle trajectories is applied to reconstruct the particle mean free paths. We derive the cosmic ray mean free paths in terms of the Alfvenic Mach numbers and particle reduced rigidities in different turbulence forcing geometries. The reduced particle rigidity is $rho=r_L/L$ where $r_L$ is the particle Larmor radius and $L$ is the simulation box length related to the turbulence coherence or injection scale $L_{inj}$ by $L sim 5 L_{inj}$. We have investigated with a special attention compressible and solenoidal forcing geometries. We find that compressible forcing solutions are compatible with the quasi-linear theory or more advanced non-linear theories which predict a rigidity dependence as $rho^{1/2}$ or $rho^{1/3}$. Solenoidal forcing solutions at least at low or moderate Alfvenic numbers are not compatible with the above theoretical expectations and require more refined arguments to be interpreted. It appears especially for Alfvenic Mach numbers close to one that the wandering of field lines controls perpendicular mean free path solutions whatever the forcing geometry.
The winds of massive stars create large (>10 pc) bubbles around their progenitors. As these bubbles expand they encounter the interstellar coherent magnetic field which, depending on its strength, can influence the shape of the bubble. We wish to inv estigate if, and how much, the interstellar magnetic field can contribute to the shape of an expanding circumstellar bubble around a massive star. We use the MPI-AMRVAC code to make magneto-hydrodynamical simulations of bubbles, using a single star model, combined with several different field strengths: B = 5, 10, and 20 muG for the interstellar magnetic field. This covers the typical field strengths of the interstellar magnetic fields found in the galactic disk and bulge. Furthermore, we present two simulations that include both a 5 muG interstellar magnetic field and a 10,000 K interstellar medium and two different ISM densities to demonstrate how the magnetic field can combine with other external factors to influence the morphology of the circumstellar bubbles. Our results show that low magnetic fields, as found in the galactic disk, inhibit the growth of the circumstellar bubbles in the direction perpendicular to the field. As a result, the bubbles become ovoid, rather than spherical. Strong interstellar fields, such as observed for the galactic bulge, can completely stop the expansion of the bubble in the direction perpendicular to the field, leading to the formation of a tube-like bubble. When combined with a warm, high-density ISM the bubble is greatly reduced in size, causing a dramatic change in the evolution of temporary features inside the bubble. The magnetic field of the interstellar medium can affect the shape of circumstellar bubbles. This effect may have consequences for the shape and evolution of circumstellar nebulae and supernova remnants, which are formed within the main wind-blown bubble.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا