ترغب بنشر مسار تعليمي؟ اضغط هنا

The observational appearance of black holes in X-ray binary systems depends on their masses, spins, accretion rate and the misalignment angle between the black hole spin and the orbital angular momentum. We used high-precision optical polarimetric ob servations to constrain the position angle of the orbital axis of the black hole X-ray binary MAXI J1820+070. Together with previously obtained orientation of the relativistic jet and the inclination of the orbit this allowed us to determine a lower limit of 40 degrees on the misalignment angle. Such a large misalignment challenges the models of quasi-periodic oscillations observed in black hole X-ray binaries, puts strong constraints on the black hole formation mechanisms, and has to be accounted for when measuring black hole masses and spins from the X-ray data.
Emission from an accretion disc around compact objects, such as neutron stars and black holes, is expected to be significantly polarized. The polarization can be used to put constraints on geometrical and physical parameters of the compact sources -- their radii, masses and spins -- as well as to determine the orbital parameters. The radiation escaping from the innermost parts of the disc is strongly affected by the gravitational field of the compact object and relativistic velocities of the matter. The straightforward calculation of the observed polarization signatures involves computationally expensive ray-tracing technique. At the same time, having fast computational routines for direct data fitting becomes increasingly important in light of the currently observed images of the accretion flow around supermassive black hole in M87 by the Event Horizon Telescope, infrared polarization signatures coming from Sgr A*, as well as for the upcoming X-ray polarization measurements by the Imaging X-ray Polarimetry Explorer and enhanced X-ray Timing and Polarimetry mission. In this work, we obtain an exact analytical expression for the rotation angle of polarization plane in Schwarzschild metric accounting for the effects of light bending and relativistic aberration. We show that the calculation of the observed flux, polarization degree and polarization angle as a function of energy can be performed analytically with high accuracy using approximate light-bending formula, lifting the need for the pre-computed tabular models in fitting routines.
The geometry of the inner accretion flow in the hard and hard-intermediate states of X-ray binaries remains controversial. Using NICER observations of the black hole X-ray binary MAXI J1820+070 during the rising phase of its 2018 outburst, we study t he evolution of the timing properties, in particular the characteristic variability frequencies of the prominent iron K$alpha$ line. Using frequency-resolved spectroscopy, we find that reflection occurs at large distances from the Comptonizing region in the bright hard state. During the hard- to soft transition, the variability properties suggest the reflector moves closer to the X-ray source. In parallel, the peak of the iron line shifts from 6.5 to ~7 keV, becoming consistent with that expected of from a highly inclined disc extending close to the black hole. We additionally find significant changes in the dependence of the root-mean-square (rms) variability on both energy and Fourier frequency as the source softens. The evolution of the rms-energy dependence, the line profile, and the timing properties of the iron line as traced by the frequency-resolved spectroscopy all support the picture of a truncated disc/inner flow geometry.
We describe the first complete polarimetric dataset of the entire outburst of a low-mass black hole X-ray binary system and discuss the constraints for geometry and radiative mechanisms it imposes. During the decaying hard state, when the optical flu x is dominated by the non-thermal component, the observed polarization is consistent with the interstellar values in all filters. During the soft state, the intrinsic polarization of the source is small, $sim 0.15$ per cent in $B$ and $V$ filters, and is likely produced in the irradiated disc. A much higher polarization, reaching $sim 0.5$ per cent in $V$ and $R$ filters, at position angle of $sim 25^circ$ observed in the rising hard state coincides in time with the detection of winds in the system. This angle coincides with the position angle of the jet. The detected optical polarization is best explained by scattering of the non-thermal (hot flow or jet base) radiation in an equatorial wind.
Black hole X-ray binaries show signs of non-thermal emission in the optical/near-infrared range. We analyze the optical/near-infrared SMARTS data on GX339$-$4 over the 2002--2011 period. Using the soft state data, we estimate the interstellar extinct ion towards the source and characteristic color temperatures of the accretion disk. We show that various spectral states of regular outbursts occupy similar regions on the color-magnitude diagrams, and that transitions between the states proceed along the same tracks despite substantial differences in the observed light curves morphology. We determine the typical duration of the hard-to-soft and soft-to-hard state transitions and the hard state at the decaying stage of the outburst to be one, two and four weeks, respectively. We find that the failed outbursts cannot be easily distinguished from the regular ones at their early stages, but if the source reaches 16 mag in $V$-band, it will transit to the soft state. By subtracting the contribution of the accretion disk, we obtain the spectra of the non-thermal component, which have constant, nearly flat shape during the transitions between the hard and soft states. In contrast to the slowly evolving non-thermal component seen at optical and near-infrared wavelengths, the mid-infrared spectrum is strongly variable on short timescales and sometimes shows a prominent excess with a cutoff below $10^{14}$ Hz. We show that the radio to optical spectrum can be modeled using three components corresponding to the jet, hot flow and irradiated accretion disk.
We investigate variability of optical and near-infrared light curves of the X-ray binary GX 339-4 on a timescale of days. We use the data in four filters from six intervals corresponding to the soft state and from four intervals corresponding to the quiescent state. In the soft state, we find prominent oscillations with the average period P = 1.772 $pm$ 0.003 d, which is offset from the measured orbital period of the system by 0.7 per cent. We suggest that the measured periodicity originates from the superhumps. In line with this interpretation we find no periodicity in the quiescent state. The obtained period excess $epsilon$ is below typical values found for cataclysmic variables for the same mass ratio of the binary. We discuss implications of this finding in the context of the superhump theory.
We study the effects of the mutual interaction of hot plasma and cold medium in black hole binaries in their hard spectral state on the value of the truncation radii of accretion discs. We consider a number of different geometries. In contrast to pre vious theoretical studies, we use a modern energy-conserving code for reflection and reprocessing from cold media. We show that a static corona above a disc extending to the innermost stable circular orbit produces spectra not compatible with those observed. They are either too soft or require a much higher disc ionization than that observed. This conclusion confirms a number of previous findings, but disproves a recent study claiming an agreement of that model with observations. We show that the cold disc has to be truncated in order to agree with the observed spectral hardness. However, a cold disc truncated at a large radius and replaced by a hot flow produces spectra which are too hard if the only source of seed photons for Comptonization is the accretion disc. Our favourable geometry is a truncated disc coexisting with a hot plasma either overlapping with the disc or containing some cold matter within it, also including seed photons arising from cyclo-synchrotron emission of hybrid electrons, i.e. containing both thermal and non-thermal parts.
We report the discovery of the correlated optical/X-ray low-frequency quasi-periodic oscillations (QPOs) in black hole binary SWIFT J1753.5-0127. The phase lag between two light-curves at the QPO frequency is close to zero. This result puts strong co nstraints on the nature of the optical emission in this object and on the origin of the QPOs in general. We demonstrate that the QPO signal and the broadband variability can be explained in terms of the hot accretion flow radiating in both optical and X-ray bands. In this model, the QPO appears due to the Lense-Thirring precession of entire flow, while the broadband variability in the optical is produced by two components: the hot flow and the irradiated disc. Using the phase-lag spectra, we put a lower limit on the orbital inclination i>50 deg, which can be used to constrain the mass of the compact object.
A number of black hole X-ray transients show quasi-periodic oscillations (QPOs) in the optical (ultraviolet) and X-ray bands at the same frequency, which challenge models for production of radiation at these wavelengths. We propose a model where the optical radiation is modulated by the oscillating X-ray flux resulting in varying irradiation of the outer parts of the accretion disc. The proposed QPO mechanism inevitably takes place in the systems with sufficiently small ratio of the outer disc radius to the QPO period. We show that, unlike in the case of the aperiodic variability, it is not possible to obtain the optical QPO profiles from those observed in the X-rays through the transfer function, because of different X-ray signals seen by the disc and by the observer. We demonstrate that with the increasing QPO frequency, occurring at the rising phase of the X-ray outburst, the rms should be constant for sufficiently low frequencies, then to increase reaching the peak and finally to drop substantially when the QPO period becomes comparable to the light-crossing time to the outer disc. We predict that the QPO rms in this model should increase towards shorter wavelengths and this fact can be used to distinguish it from other QPO mechanisms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا