ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical techniques for polarimetric imaging of accretion flows in Schwarzschild metric

51   0   0.0 ( 0 )
 نشر من قبل Vladislav Loktev
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Emission from an accretion disc around compact objects, such as neutron stars and black holes, is expected to be significantly polarized. The polarization can be used to put constraints on geometrical and physical parameters of the compact sources -- their radii, masses and spins -- as well as to determine the orbital parameters. The radiation escaping from the innermost parts of the disc is strongly affected by the gravitational field of the compact object and relativistic velocities of the matter. The straightforward calculation of the observed polarization signatures involves computationally expensive ray-tracing technique. At the same time, having fast computational routines for direct data fitting becomes increasingly important in light of the currently observed images of the accretion flow around supermassive black hole in M87 by the Event Horizon Telescope, infrared polarization signatures coming from Sgr A*, as well as for the upcoming X-ray polarization measurements by the Imaging X-ray Polarimetry Explorer and enhanced X-ray Timing and Polarimetry mission. In this work, we obtain an exact analytical expression for the rotation angle of polarization plane in Schwarzschild metric accounting for the effects of light bending and relativistic aberration. We show that the calculation of the observed flux, polarization degree and polarization angle as a function of energy can be performed analytically with high accuracy using approximate light-bending formula, lifting the need for the pre-computed tabular models in fitting routines.

قيم البحث

اقرأ أيضاً

47 - Juri Poutanen 2019
We propose new analytic formulae describing light bending in Schwarzschild metric. For emission radii above the photon orbit at 1.5 Schwarzschild radius, the formulae have an accuracy of better than 0.2% for the bending angle and 3% for the lensing f actor for any trajectories that turn around a compact object by less than about 160 deg. In principle, they can be applied to any emission point above the horizon of the black hole. The proposed approximation can be useful for problems involving emission from neutron stars and accretion discs around compact objects when fast accurate calculations of light bending are required. It can also be used to test the codes that compute light bending using exact expressions via elliptical integrals.
57 - M. Revnivtsev 2010
We study simultaneous X-ray and optical observations of three intermediate polars EX Hya, V1223 Sgr and TV Col with the aim to understand the propagation of matter in their accretion flows. We show that in all cases the power spectra of flux variabil ity of binary systems in X-rays and in optical band are similar to each other and the majority of X-ray and optical fluxes are correlated with time lag <1 sec. These findings support the idea that optical emission of accretion disks, in these binary systems,largely originates as reprocessing of X-ray luminosity of their white dwarfs. In the best obtained dataset of EX Hya we see that the optical lightcurve unambiguously contains some component, which leads the X-ray emission by ~7 sec. We interpret this in the framework of the model of propagating fluctuations and thus deduce the time of travel of the matter from the innermost part of the truncated accretion disk to the white dwarf surface. This value agrees very well with the time expected for matter threaded onto the magnetosphere of the white dwarf to fall to its surface. The datasets of V1223 Sgr and TV Col in general confirm these findings,but have poorer quality.
In April 2017, the Event Horizon Telescope observed the shadow of the supermassive black hole at the core of the elliptical galaxy Messier 87. While the original image was constructed from measurements of the total intensity, full polarimetric data w ere also collected, and linear polarimetric images are expected in the near future. We propose a modal image decomposition of the linear polarization field into basis functions with varying azimuthal dependence of the electric vector position angle. We apply this decomposition to images of ray traced general relativistic magnetohydrodynamics simulations of the Messier 87 accretion disk. For simulated images that are physically consistent with previous observations, the magnitude of the coefficient associated with rotational symmetry, $beta_2$, is a useful discriminator between accretion states. We find that at 20 $mu$as resolution, $|beta_2|$ is greater than 0.2 only for models of disks with horizon-scale magnetic pressures large enough to disrupt steady accretion. We also find that images with a more radially directed electric vector position angle correspond to models with higher black hole spin. Our analysis demonstrates the utility of the proposed decomposition as a diagnostic framework to improve constraints on theoretical models.
85 - L. Ciotti 2018
The fully analytical solution for isothermal Bondi accretion on a black hole (MBH) at the center of JJ two-component Jaffe (1983) galaxy models is presented. In JJ models the stellar and total mass density distributions are described by the Jaffe pro file, with different scale-lengths and masses, and to which a central MBH is added; all the relevant stellar dynamical properties can also be derived analytically. In these new accretion solutions the hydrodynamical and stellar dynamical properties are linked by imposing that the gas temperature is proportional to the virial temperature of the stellar component. The formulae that are provided allow to evaluate all flow properties, and are then useful for estimates of the accretion radius and the mass flow rate when modeling accretion on MBHs at the center of galaxies.
88 - Xiao-Hong Yang 2018
We study the effects of accretion environment (gas density, temperature and angular momentum) at large radii ($sim 10$pc) on luminosity of hot accretion flows. The radiative feedback effects from the accretion flow on the accretion environment are al so self-consistently taken into account. We find that the slowly rotating flows at large radii can significantly deviate from Bondi accretion when radiation heating and cooling are considered. We further find that when the temperature of environment gas is low (e.g. $T=2times 10^7$K), the luminosity of hot accretion flows is high. When the temperature of gas is high (e.g. $Tgeq4times 10^7$K), the luminosity of hot accretion flow significantly deceases. The environment gas density can also significantly influence the luminosity of accretion flows. When density is higher than $sim 4times 10^{-22}text{g} text{cm}^{-3}$ and temperature is lower than $2times 10^7$K, hot accretion flow with luminosity lower than $2%L_{text{Edd}}$ is not present. Therefore, the pc-scale environment density and temperature are two important parameters to determine the luminosity. The results are also useful for the sub-grid models adopted by the cosmological simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا