ترغب بنشر مسار تعليمي؟ اضغط هنا

The presence of geometric phases is known to affect the dynamics of the systems involved. Here we consider a quantum degree of freedom, moving in a dissipative environment, whose dynamics is described by a Langevin equation with quantum noise. We sho w that geometric phases enter the stochastic noise terms. Specifically, we consider small ferromagnetic particles (nano-magnets) or quantum dots close to Stoner instability, and investigate the dynamics of the total magnetization in the presence of tunneling coupling to the metallic leads. We generalize the Ambegaokar-Eckern-Schon (AES) effective action and the corresponding semiclassical equations of motion from the U(1) case of the charge degree of freedom to the SU(2) case of the magnetization. The Langevin forces (torques) in these equations are strongly influenced by the geometric phase. As a first but nontrivial application we predict low temperature quantum diffusion of the magnetization on the Bloch sphere, which is governed by the geometric phase. We propose a protocol for experimental observation of this phenomenon.
In the context of fluctuation relations, we study the distribution of energy dissipated by a driven two-level system. Incorporating an energy counting field into the well known spin-boson model enables us to calculate the distribution function of the amount of energy exchanged between the system and the bath. We also derive the conditional distribution functions of the energy exchanged with the bath for particular initial and/or final states of the two-level system. We confirm the symmetry of the conditional distribution function expected from the theory of fluctuation relations. We also find that the conditional distribution functions acquire considerable quantum corrections at times shorter or of the order of the dephasing time. Our findings can be tested using solid-state qubits.
We investigate the non-adiabatic processes occurring during the manipulations of Majorana qubits in 1-D semiconducting wires with proximity induced superconductivity. Majorana qubits are usually protected by the excitation gap. Yet, manipulations per formed at a finite pace can introduce both decoherence and renormalization effects. Though exponentially small for slow manipulations, these effects are important as they may constitute the ultimate decoherence mechanism. Moreover, as adiabatic topological manipulations fail to produce a universal set of quantum gates, non-adiabatic manipulations might be necessary to perform quantum computation.
Motivated by recent experiments, which demonstrated lasing and cooling of the electromagnetic field in an electrical resonator coupled to a superconducting qubit, we study the phase coherence and diffusion of the system in the lasing state. We also d iscuss phase locking and synchronization induced by an additional {sl ac} driving of the resonator. We extend earlier work to account for the strong qubit-resonator coupling and to include the effects of low-frequency qubits noise. We show that the strong coupling may lead to a double peak structure of the spectrum, while the shape and width are determined to the low-frequency noise.
A superconducting single-electron transistor (SSET) coupled to an anharmonic oscillator, e.g., a Josephson junction-L-C circuit, can drive the latter to a nonequilibrium photon number state. By biasing the SSET in a regime where the current is carrie d by a combination of inelastic quasiparticle tunneling and coherent Cooper-pair tunneling (Josephson quasiparticle cycle), cooling of the oscillator as well as a laser like enhancement of the photon number can be achieved. Here we show, that the cut-off in the quasiparticle tunneling rate due to the superconducting gap, in combination with the anharmonicity of the oscillator, may create strongly squeezed photon number distributions. For low dissipation in the oscillator nearly pure Fock states can be produced.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا