ترغب بنشر مسار تعليمي؟ اضغط هنا

Based on the classical Plucker correspondence, we present algebraic and geometric properties of discrete integrable line complexes in $CP^3$. Algebraically, these are encoded in a discrete integrable system which appears in various guises in the theo ry of continuous and discrete integrable systems. Geometrically, the existence of these integrable line complexes is shown to be guaranteed by Desargues classical theorem of projective geometry. A remarkable characterisation in terms of correlations of $CP^3$ is also recorded.
We study the asymptotic behavior of the discrete analogue of the holomorphic map $z^a$. The analysis is based on the use of the Riemann-Hilbert approach. Specifically, using the Deift-Zhou nonlinear steepest descent method we prove the asymptotic for mulae which was conjectured in 2000 by the first co-author and S.I.~Agafonov.
We discuss discretization of Koenigs nets (conjugate nets with equal Laplace invariants) and of isothermic surfaces. Our discretization is based on the notion of dual quadrilaterals: two planar quadrilaterals are called dual, if their corresponding s ides are parallel, and their non-corresponding diagonals are parallel. Discrete Koenigs nets are defined as nets with planar quadrilaterals admitting dual nets. Several novel geometric properties of discrete Koenigs nets are found; in particular, two-dimensional discrete Koenigs nets can be characterized by co-planarity of the intersection points of diagonals of elementary quadrilaterals adjacent to any vertex; this characterization is invariant with respect to projective transformations. Discrete isothermic nets are defined as circular Koenigs nets. This is a new geometric characterization of discrete isothermic surfaces introduced previously as circular nets with factorized cross-ratios.
In the search for appropriate discretizations of surface theory it is crucial to preserve such fundamental properties of surfaces as their invariance with respect to transformation groups. We discuss discretizations based on Mobius invariant building blocks such as circles and spheres. Concrete problems considered in these lectures include the Willmore energy as well as conformal and curvature line parametrizations of surfaces. In particular we discuss geometric properties of a recently found discrete Willmore energy. The convergence to the smooth Willmore functional is shown for special refinements of triangulations originating from a curvature line parametrization of a surface. Further we treat special classes of discrete surfaces such as isothermic and minimal. The construction of these surfaces is based on the theory of circle patterns, in particular on their variational description.
We consider discrete nonlinear hyperbolic equations on quad-graphs, in particular on the square lattice. The fields are associated to the vertices and an equation Q(x_1,x_2,x_3,x_4)=0 relates four fields at one quad. Integrability of equations is und erstood as 3D-consistency. The latter is a possibility to consistently impose equations of the same type on all the faces of a three-dimensional cube. This allows to set these equations also on multidimensional lattices Z^N. We classify integrable equations with complex fields x, and Q affine-linear with respect to all arguments. The method is based on analysis of singular solutions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا