ترغب بنشر مسار تعليمي؟ اضغط هنا

Meteoritic chondrules were formed in the early solar system by brief heating of silicate dust to melting temperatures. Some highly refractory grains (Type B calcium-aluminum-rich inclusions, CAIs) also show signs of transient heating. A similar proce ss may occur in other protoplanetary disks, as evidenced by observations of spectra characteristic of crystalline silicates. One possible environment for this process is the turbulent magnetohydrodynamic flow thought to drive accretion in these disks. Such flows generally form thin current sheets, which are sites of magnetic reconnection, and dissipate the magnetic fields amplified by a disk dynamo. We suggest that it is possible to heat precursor grains for chondrules and other high-temperature minerals in current sheets that have been concentrated by our recently described short-circuit instability. We extend our work on this process by including the effects of radiative cooling, taking into account the temperature dependence of the opacity; and by examining current sheet geometry in three-dimensional, global models of magnetorotational instability. We find that temperatures above 1600 K can be reached for favorable parameters that match the ideal global models. This mechanism could provide an efficient means of tapping the gravitational potential energy of the protoplanetary disk to heat grains strongly enough to form high-temperature minerals. The volume-filling nature of turbulent magnetic reconnection is compatible with constraints from chondrule-matrix complementarity, chondrule-chondrule complementarity, the occurrence of igneous rims, and compound chondrules. The same short-circuit mechanism may perform other high-temperature mineral processing in protoplanetary disks such as the production of crystalline silicates and CAIs.
In the mean-field theory of magnetic fields, turbulent transport, i.e. the turbulent electromotive force, is described by a combination of the alpha effect and turbulent magnetic diffusion, which are usually assumed to be proportional respectively to the mean field and its spatial derivatives. For a passive scalar there is just turbulent diffusion, where the mean flux of concentration depends on the gradient of the mean concentration. However, these proportionalities are approximations that are valid only if the mean field or the mean concentration vary slowly in time. Examples are presented where turbulent transport possesses memory, i.e. where it depends crucially on the past history of the mean field. Such effects are captured by replacing turbulent transport coefficients with time integral kernels, resulting in transport coefficients that depend effectively on the frequency or the growth rate of the mean field itself. In this paper we perform numerical experiments to find the characteristic timescale (or memory length) of this effect as well as simple analytical models of the integral kernels in the case of passive scalar concentrations and kinematic dynamos. The integral kernels can then be used to find self-consistent growth or decay rates of the mean fields. In mean-field dynamos the growth rates and cycle periods based on steady state values of alpha effect and turbulent diffusivity can be quite different from the actual values.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا