ترغب بنشر مسار تعليمي؟ اضغط هنا

The physics of the triangular lattice Hubbard model exhibits a rich phenomenology, ranging from a metal-insulator transition, intriguing thermodynamic behavior, and a putative spin liquid phase at intermediate coupling, ultimately becoming a magnetic insulator at strong coupling. In this multi-method study, we combine a finite-temperature tensor network method, minimally entangled thermal typical states (METTS), with two Green function-based methods, connected-determinant diagrammatic Monte Carlo (DiagMC) and cellular dynamical mean-field theory (CDMFT), to establish several aspects of this model. We elucidate the evolution from the metallic to the insulating regime from the complementary perspectives brought by these different methods. We compute the full thermodynamics of the model on a width-4 cylinder using METTS in the intermediate to strong coupling regime. We find that the insulating state hosts a large entropy at intermediate temperatures, which increases with the strength of the coupling. Correspondingly, and consistently with a thermodynamic Maxwell relation, the double occupancy has a minimum as a function of temperature which is the manifestation of the Pomeranchuk effect of increased localisation upon heating. The intermediate coupling regime is found to exhibit both pronounced chiral as well as stripy antiferromagnetic spin correlations. We propose a scenario in which time-reversal symmetry broken states compete with nematic, lattice rotational symmetry breaking orders at lowest temperatures.
The interplay between thermal and quantum fluctuations controls the competition between phases of matter in strongly correlated electron systems. We study finite-temperature properties of the strongly coupled two-dimensional doped Hubbard model using the minimally-entangled typical thermal states (METTS) method on width $4$ cylinders. We discover that a phase characterized by commensurate short-range antiferromagnetic correlations and no charge ordering occurs at temperatures above the half-filled stripe phase extending to zero temperature. The transition from the antiferromagnetic phase to the stripe phase takes place at temperature $T/t approx 0.05$ and is accompanied by a step-like feature of the specific heat. We find the single-particle gap to be smallest close to the nodal point at $mathbf{k}=(pi/2, pi/2)$ and detect a maximum in the magnetic susceptibility. These features bear a strong resemblance to the pseudogap phase of high-temperature cuprate superconductors. The simulations are verified using a variety of different unbiased numerical methods in the three limiting cases of zero temperature, small lattice sizes, and half-filling. Moreover, we compare to and confirm previous determinantal quantum Monte Carlo results on incommensurate spin-density waves at finite doping and temperature.
We present numerical evidence for the emergence of an extended valence bond solid (VBS) phase at $T=0$ in the kagome $S=1/2$ Heisenberg antiferromagnet with ferromagnetic further-neighbor interactions. The VBS is located at the boundary between two m agnetically ordered regions and extends close to the nearest-neighbor Heisenberg point. It exhibits a diamond-like singlet covering pattern with a $12$-site unit-cell. Our results suggest the possibility of a direct, possibly continuous, quantum phase transition from the neighboring $mathbf{q}=0$ coplanar magnetically ordered phase into the VBS phase. Moreover, a second phase which breaks lattice symmetries, and is of likely spin-nematic type, is found close to the transition to the ferromagnetic phase. The results have been obtained using numerical Exact Diagonalization. We discuss implications of our results on the nature of nearest-neighbor Heisenberg antiferromagnet.
The thermodynamic properties of the Shastry-Sutherland model have posed one of the longest-lasting conundrums in frustrated quantum magnetism. Over a wide range on both sides of the quantum phase transition (QPT) from the dimer-product to the plaquet te-based ground state, neither analytical nor any available numerical methods have come close to reproducing the physics of the excited states and thermal response. We solve this problem in the dimer-product phase by introducing two qualitative advances in computational physics. One is the use of thermal pure quantum (TPQ) states to augment dramatically the size of clusters amenable to exact diagonalization. The second is the use of tensor-network methods, in the form of infinite projected entangled pair states (iPEPS), for the calculation of finite-temperature quantities. We demonstrate convergence as a function of system size in TPQ calculations and of bond dimension in our iPEPS results, with complete mutual agreement even extremely close to the QPT. Our methods reveal a remarkably sharp and low-lying feature in the magnetic specific heat around the QPT, whose origin appears to lie in a proliferation of excitations composed of two-triplon bound states. The surprisingly low energy scale and apparently extended spatial nature of these states explain the failure of less refined numerical approaches to capture their physics. Both of our methods will have broad and immediate application in addressing the thermodynamic response of a wide range of highly frustrated magnetic models and materials.
We present algorithmic improvements for fast and memory-efficient use of discrete spatial symmetries in Exact Diagonalization computations of quantum many-body systems. These techniques allow us to work flexibly in the reduced basis of symmetry-adapt ed wave functions. Moreover, a parallelization scheme for the Hamiltonian-vector multiplication in the Lanczos procedure for distributed memory machines avoiding load balancing problems is proposed. We demonstrate that using these methods low-energy properties of systems of up to 50 spin-1/2 particles can be successfully determined.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا