ترغب بنشر مسار تعليمي؟ اضغط هنا

The spectrum of triatomic molecules with close rovibrational opposite parity levels is sensitive to the $mathcal{P}$,$mathcal{T}$-odd effects. This makes them a convenient platform for the experimental search of a new physics. Among the promising can didates one may distinguish the YbOH as a non-radioactive compound with a heavy atom. The energy gap between levels of opposite parity, $l$-doubling, is of a great interest as it determines the electric field strength required for the full polarization of the molecule. Likewise, the influence of the bending and stretching modes on the sensitivities to the $mathcal{P}$,$mathcal{T}$-violation requires a thorough investigation since the measurement would be performed on the excited vibrational states. This motivates us to obtain the rovibrational nuclear wavefunctions, taking into account the anharmonicity of the potential. As a result, we get the values of the $E_{rm eff}$ and $E_s$ for the lowest excited vibrational state and determine the $l$-doubling
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets. This makes it a promising candidate for experimental study of the $mathcal{P}$,$mathcal{T}$-violation. Previous studies concent rated on the calculations for different geometries without the averaging over the rovibrational wave function and stressed the possibility that the dependence of the $mathcal{P}$, $mathcal{T}$ parameters on the bond angle may significantly alter the observed value. We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian. The potential surface is constructed based on the two-component relativistic CCSD(T) computation employing the generalized relativistic effective core potential (GRECP) for the Radium atom. The averaged values of the parameters $E_{rm eff}$ and $E_s$ describing the sensitivity of the system to the electron electric dipole moment and the scalar-pseudoscalar nucleon-electron interaction are calculated and the value of $l$-doubling is obtained.
The effect of conical intersections (CIs) on electronic relaxation, transitions from excited states to ground states, is well studied, but their influence on hyperfine quenching in a reactant molecule is not known. Here, we report on ultracold collis ion dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states. Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection at collinear geometry. We observe wide scattering resonance features in both elastic and inelastic rate coefficients at collision energies below k x 10 mK. They are identified as either p- or d-wave shape resonances. We also describe the electronic potentials relevant for these non-reactive collisions, their diabatization procedure, as well as the non-adiabatic coupling between the diabatic potentials near the CIs.
91 - Alexander Petrov 2020
We construct examples of smooth proper rigid-analytic varieties admitting formal model with projective special fiber and violating Hodge symmetry for cohomology in degrees $geq 3$. This answers negatively a question raised by Hansen and Li.
We theoretically investigate trapping conditions for ultracold polar molecules in optical lattices, when external magnetic and electric fields are simultaneously applied. Our results are based on an accurate electronic-structure calculation of the po lar $^{23}$Na$^{40}$K polar molecule in its absolute ground state combined with a calculation of its rovibrational-hyperfine motion. We find that an electric field strength of $5.26(15)$ kV/cm and an angle of $54.7^circ$ between this field and the polarization of the optical laser lead to a trapping design for $^{23}$Na$^{40}$K molecules where decoherences due laser-intensity fluctuations and fluctuations in the direction of its polarization are kept to a minimum. One standard deviation systematic and statistical uncertainties are given in parenthesis. Under such conditions pairs of hyperfine-rotational states of $v=0$ molecules, used to induce tunable dipole-dipole interactions between them, experience ultrastable, matching trapping forces.
We study the low-temperature charge transfer reaction between a neutral atom and an ion under the influence of near-resonant laser light. By setting up a multi-channel model with field-dressed states we demonstrate that the reaction rate coefficient can be enhanced by several orders of magnitude with laser intensities of $10^6$ W/cm$^2$ or larger. In addition, depending on laser frequency one can induce a significant enhancement or suppression of the charge-exchange rate coefficient. For our intensities multi-photon processes are not important.
We theoretically evaluate the feasibility to form magnetically-tunable Feshbach molecules in collisions between fermionic $^6$Li atoms and bosonic metastable $^{174}$Yb($^3$P$_2$) atoms. In contrast to the well-studied alkali-metal atom collisions, c ollisions with meta-stable atoms are highly anisotropic. Our first-principle coupled-channel calculation of these collisions reveals the existence of broad Feshbach resonances due to the combined effect of anisotropic-molecular and atomic-hyperfine interactions. In order to fit our predictions to the specific positions of experimentally-observed broad resonance structures cite{Deep2015} we optimized the shape of the short-range potentials by direct least-square fitting. This allowed us to identify the dominant resonance by its leading angular momentum quantum numbers and describe the role of collisional anisotropy in the creation and broadening of this and other resonances.
The concept of interface superconductivity was introduced over 50 years ago. Some of the greatest physicists of that time wondered whether a quasi-two-dimensional (2D) superconductor can actually exist, what are the peculiarities of 2D superconductiv ity, and how does the reduced dimensionality affect the critical temperature (Tc). The discovery of high-temperature superconductors, which are composed of coupled 2D superconducting layers, further increased the interest in reduced dimensionality structures. In parallel, the advances in experimental techniques made it possible to grow epitaxial 2D structures with atomically flat surfaces and interfaces, enabling some of the experiments that were proposed decades ago to be performed finally. Now we know that interface superconductivity can occur at the junction of two different materials (metals, insulators, semiconductors). This phenomenon is being explored intensely; it is also exploited as a means to increase Tc or to study quantum critical phenomena. This research may or may not produce a superconductor with a higher Tc or a useful superconducting electronic device but it will likely bring in new insights into the physics underlying high-temperature superconductivity.
It is proved that there exist no simple finite-dimensional Filippov superalgebras of type A(m,n) over an algebraically closed field of characteristic 0.
It is proved that there exist no simple finite-dimensional Filippov superalgebras of type A(0,n) over an algebraically closed field of characteristic 0.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا