ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum simulators and processors are rapidly improving nowadays, but they are still not able to solve complex and multidimensional tasks of practical value. However, certain numerical algorithms inspired by the physics of real quantum devices prove to be efficient in application to specific problems, related, for example, to combinatorial optimization. Here we implement a numerical annealer based on simulating the coherent Ising machine as a tool to sample from a high-dimensional Boltzmann probability distribution with the energy functional defined by the classical Ising Hamiltonian. Samples provided by such a generator are then utilized for the partition function estimation of this distribution and for the training of a general Boltzmann machine. Our study opens up a door to practical application of numerical quantum-inspired annealers.
We report on the observation of multimode strong coupling of a small ensemble of atoms interacting with the field of a 30-m long fiber resonator containing a nanofiber section. The collective light--matter coupling strength exceeds the free spectral range and the atoms couple to consecutive longitudinal resonator modes. The measured transmission spectra of the coupled atom-resonator system provide evidence of this regime, realized with a few hundred atoms with an intrinsic single-atom cooperativity of 0.26. These results are the starting point for studies in a new setting of light-matter interaction, with strong quantum non-linearities and a new type of dynamics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا