ترغب بنشر مسار تعليمي؟ اضغط هنا

We study conditions for the emergence of the preformed Cooper pairs in materials hosting flat bands. As a particular example, we consider time-reversal symmetric pseudospin-1 semimetal, with a pair of three-band crossing points at which a flat band i ntersects with a Dirac cone, and focus on the s-wave inter-node pairing channel. The nearly dispersionless nature of the flat band promotes local Cooper pair formation so that the system can be considered as an array of superconducting grains. Due to dispersive bands, Andreev scattering between the grains gives rise to the global phase-coherent superconductivity at low temperatures. We develop a theory to calculate transition temperature between the preformed Cooper pair state and the phase-coherent state for different interaction strengths in the Cooper channel.
Larkin-Ovchinnikov superconducting state has spontaneous modulation of Cooper pair density, while Fulde-Ferrell state has a spontaneous modulation in the phase of the order parameter. We report that a quasi-two-dimensional Dirac metal, under certain conditions has principally different inhomogeneous superconducting states that by contrast have spontaneous modulation in a submanifold of a multiple-symmetries-breaking order parameter. The first state we find can be viewed as a nematic superconductor where the nematicity vector spontaneously breaks rotational and translational symmetries due to spatial modulation. The other demonstrated state is a chiral superconductor with spontaneously broken time-reversal and translational symmetries. It is characterized by an order parameter, which forms a lattice pattern of alternating chiralities.
We consider the impact of disorder on the spectrum of three-dimensional nodal-line semimetals. We show that the combination of disorder and a tilted spectrum naturally leads to a non-Hermitian self-energy contribution that can split a nodal line into a pair of exceptional lines. These exceptional lines form the boundary of an open and orientable bulk Fermi ribbon in reciprocal space on which the energy gap vanishes. We find that the orientation and shape of such a disorder-induced bulk Fermi ribbon is controlled by the tilt direction and the disorder properties, which can also be exploited to realize a twisted bulk Fermi ribbon with nontrivial winding number. Our results put forward a paradigm for the exploration of non-Hermitian topological phases of matter.
We study the effect of bias voltage on the nuclear spin polarization of a ballistic wire, which contains electrons and nuclei interacting via hyperfine interaction. In equilibrium, the localized nuclear spins are helically polarized due to the electr on-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Focusing here on non-equilibrium, we find that an applied bias voltage induces a uniform polarization, from both helically polarized and unpolarized spins available for spin flips. Once a macroscopic uniform polarization in the nuclei is established, the nuclear spin helix rotates with frequency proportional to the uniform polarization. The uniform nuclear spin polarization monotonically increases as a function of both voltage and temperature, reflecting a thermal activation behavior. Our predictions offer specific ways to test experimentally the presence of a nuclear spin helix polarization in semiconducting quantum wires.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا