ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider finite Morse index solutions to semilinear elliptic questions, and we investigate their smoothness. It is well-known that: - For $n=2$, there exist Morse index $1$ solutions whose $L^infty$ norm goes to infinity. - For $n geq 3$, unif orm boundedness holds in the subcritical case for power-type nonlinearities, while for critical nonlinearities the boundedness of the Morse index does not prevent blow-up in $L^infty$. In this paper, we investigate the case of general supercritical nonlinearities inside convex domains, and we prove an interior a priori $L^infty$ bound for finite Morse index solution in the sharp dimensional range $3leq nleq 9$. As a corollary, we obtain uniform bounds for finite Morse index solutions to the Gelfand problem constructed via the continuity method.
In this paper we analyze the singular set in the Stefan problem and prove the following results: - The singular set has parabolic Hausdorff dimension at most $n-1$. - The solution admits a $C^infty$-expansion at all singular points, up to a set o f parabolic Hausdorff dimension at most $n-2$. - In $mathbb R^3$, the free boundary is smooth for almost every time $t$, and the set of singular times $mathcal Ssubset mathbb R$ has Hausdorff dimension at most $1/2$. These results provide us with a refined understanding of the Stefan problems singularities and answer some long-standing open questions in the field.
The goal of this paper is to establish generic regularity of free boundaries for the obstacle problem in $mathbb R^n$. By classical results of Caffarelli, the free boundary is $C^infty$ outside a set of singular points. Explicit examples show that th e singular set could be in general $(n-1)$-dimensional ---that is, as large as the regular set. Our main result establishes that, generically, the singular set has zero $mathcal H^{n-4}$ measure (in particular, it has codimension 3 inside the free boundary). In particular, for $nleq4$, the free boundary is generically a $C^infty$ manifold. This solves a conjecture of Schaeffer (dating back to 1974) on the generic regularity of free boundaries in dimensions $nleq4$.
In this paper we prove the following long-standing conjecture: stable solutions to semilinear elliptic equations are bounded (and thus smooth) in dimension $n leq 9$. This result, that was only known to be true for $nleq4$, is optimal: $log(1/|x|^2 )$ is a $W^{1,2}$ singular stable solution for $ngeq10$. The proof of this conjecture is a consequence of a new universal estimate: we prove that, in dimension $n leq 9$, stable solutions are bounded in terms only of their $L^1$ norm, independently of the nonlinearity. In addition, in every dimension we establish a higher integrability result for the gradient and optimal integrability results for the solution in Morrey spaces. As one can see by a series of classical examples, all our results are sharp. Furthermore, as a corollary we obtain that extremal solutions of Gelfand problems are $W^{1,2}$ in every dimension and they are smooth in dimension $n leq 9$. This answers to two famous open problems posed by Brezis and Brezis-Vazquez.
Given $n geq 2$ and $1<p<n$, we consider the critical $p$-Laplacian equation $Delta_p u + u^{p^*-1}=0$, which corresponds to critical points of the Sobolev inequality. Exploiting the moving planes method, it has been recently shown that positive solu tions in the whole space are classified. Since the moving plane method strongly relies on the symmetries of the equation and the domain, in this paper we provide a new approach to this Liouville-type problem that allows us to give a complete classification of solutions in an anisotropic setting. More precisely, we characterize solutions to the critical $p$-Laplacian equation induced by a smooth norm inside any convex cone. In addition, using optimal transport, we prove a general class of (weighted) anisotropic Sobolev inequalities inside arbitrary convex cones.
We study the regularity of the free boundary in the obstacle for the $p$-Laplacian, $minbigl{-Delta_p u,,u-varphibigr}=0$ in $Omegasubsetmathbb R^n$. Here, $Delta_p u=textrm{div}bigl(| abla u|^{p-2} abla ubigr)$, and $pin(1,2)cup(2,infty)$. Near th ose free boundary points where $ abla varphi eq0$, the operator $Delta_p$ is uniformly elliptic and smooth, and hence the free boundary is well understood. However, when $ abla varphi=0$ then $Delta_p$ is singular or degenerate, and nothing was known about the regularity of the free boundary at those points. Here we study the regularity of the free boundary where $ abla varphi=0$. On the one hand, for every $p eq2$ we construct explicit global $2$-homogeneous solutions to the $p$-Laplacian obstacle problem whose free boundaries have a corner at the origin. In particular, we show that the free boundary is in general not $C^1$ at points where $ abla varphi=0$. On the other hand, under the concavity assumption $| abla varphi|^{2-p}Delta_p varphi<0$, we show the free boundary is countably $(n-1)$-rectifiable and we prove a nondegeneracy property for $u$ at all free boundary points.
The parabolic obstacle problem for the fractional Laplacian naturally arises in American option models when the assets prices are driven by pure jump Levy processes. In this paper we study the regularity of the free boundary. Our main result establis hes that, when $s>frac12$, the free boundary is a $C^{1,alpha}$ graph in $x$ and $t$ near any regular free boundary point $(x_0,t_0)in partial{u>varphi}$. Furthermore, we also prove that solutions $u$ are $C^{1+s}$ in $x$ and $t$ near such points, with a precise expansion of the form [u(x,t)-varphi(x)=c_0bigl((x-x_0)cdot e+a(t-t_0)bigr)_+^{1+s}+obigl(|x-x_0|^{1+s+alpha}+ |t-t_0|^{1+s+alpha}bigr),] with $c_0>0$, $ein mathbb{S}^{n-1}$, and $a>0$.
We study the positivity and regularity of solutions to the fractional porous medium equations $u_t+(-Delta)^su^m=0$ in $(0,infty)timesOmega$, for $m>1$ and $sin (0,1)$ and with Dirichlet boundary data $u=0$ in $(0,infty)times({mathbb R}^NsetminusOmeg a)$, and nonnegative initial condition $u(0,cdot)=u_0geq0$. Our first result is a quantitative lower bound for solutions which holds for all positive times $t>0$. As a consequence, we find a global Harnack principle stating that for any $t>0$ solutions are comparable to $d^{s/m}$, where $d$ is the distance to $partialOmega$. This is in sharp contrast with the local case $s=1$, in which the equation has finite speed of propagation. After this, we study the regularity of solutions. We prove that solutions are classical in the interior ($C^infty$ in $x$ and $C^{1,alpha}$ in $t$) and establish a sharp $C^{s/m}_x$ regularity estimate up to the boundary. Our methods are quite general, and can be applied to a wider class of nonlocal parabolic equations of the form $u_t-mathcal L F(u)=0$ in $Omega$, both in bounded or unbounded domains.
We prove a strong form of the quantitative Sobolev inequality in $mathbb{R}^n$ for $pgeq 2$, where the deficit of a function $uin dot W^{1,p} $ controls $| abla u - abla v|_{L^p}$ for an extremal function $v$ in the Sobolev inequality.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا