ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the quantum entropy of systems that are described by general non-Hermitian Hamiltonians, including those which can model the effects of sinks or sources. We generalize the von Neumann entropy to the non- Hermitian case and find that one need s both the normalized and non-normalized density operators in order to properly describe irreversible processes. It turns out that such a generalization monitors the onset of disorder in quantum dissipative systems. We give arguments for why one can consider the generalized entropy as the informational entropy describing the flow of information between the system and the bath. We illustrate the theory by explicitly studying few simple models, including tunneling systems with two energy levels and non-Hermitian detuning.
33 - Alessandro Sergi 2015
Quantum systems with a non-conserved probability can be described by means of non-Hermitian Hamiltonians and non-unitary dynamics. In this paper, the case in which the degrees of freedom can be partitioned in two subsets with light and heavy masses i s treated. A classical limit over the heavy coordinates is taken in order to embed the non-unitary dynamics of the subsystem in a classical environment. Such a classical environment, in turn, acts as an additional source of dissipation (or noise), beyond that represented by the non-unitary evolution. The non-Hermitian dynamics of a Heisenberg two-spin chain, with the spins independently coupled to harmonic oscillators, is considered in order to illustrate the formalism.
We introduce a formalism for time-dependent correlation functions for systems whose evolutions are governed by non-Hermitian Hamiltonians of general type. It turns out that one can define two different types of time correlation functions. Both these definitions seem to be physically consistent while becoming equivalent only in certain cases. Moreover, when autocorrelation functions are considered, one can introduce another function defined as the relative difference between the two definitions. We conjecture that such a function can be used to assess the positive semi-definiteness of the density operator without computing its eigenvalues. We illustrate these points by studying analytically a number of models with two energy levels.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا