We compare the measured angular cross-correlation between the Fermi-LAT gamma-ray sky and catalogues of extra-galactic objects with the expected signal induced by weakly interacting massive particle (WIMP) dark matter (DM). We include a detailed desc
ription of the contribution of astrophysical gamma-ray emitters such as blazars, misaligned AGN and star forming galaxies, and perform a global fit to the measured cross-correlation. Five catalogues are considered: SDSS-DR6 quasars, 2MASS galaxies, NVSS radio galaxies, SDSS-DR8 Luminous Red Galaxies and SDSS-DR8 main galaxy sample. To model the cross-correlation signal we use the halo occupation distribution formalism to estimate the number of galaxies of a given catalogue in DM halos and their spatial correlation properties. We discuss uncertainties in the predicted cross-correlation signal arising from the DM clustering and WIMP microscopic properties, which set the DM gamma-ray emission. The use of different catalogues probing objects at different redshifts reduces significantly, though not completely, the degeneracy among the different gamma-ray components. We find that the presence of a significant WIMP DM signal is allowed by the data but not significantly preferred by the fit, although this is mainly due to a degeneracy with the misaligned AGN component. With modest substructure boost, the sensitivity of this method excludes thermal annihilation cross sections at 95% C.L. for WIMP masses up to few tens of GeV. Constraining the low-redshift properties of astrophysical populations with future data will further improve the sensitivity to DM.
If dark matter (DM) is composed by particles which are non-gravitationally coupled to ordinary matter, their annihilations or decays in cosmic structures can result in detectable radiation. We show that the most powerful technique to detect a particl
e DM signal outside the Local Group is to study the angular cross-correlation of non-gravitational signals with low-redshift gravitational probes. This method allows to enhance signal-to-noise from the regions of the Universe where the DM-induced emission is preferentially generated. We demonstrate the power of this approach by focusing on GeV-TeV DM and on the recent cross-correlation analysis between the 2MASS galaxy catalogue and the Fermi-LAT gamma-ray maps. We show that this technique is more sensitive than other extragalactic gamma-ray probes, such as the energy spectrum and angular autocorrelation of the extragalactic background, and emission from clusters of galaxies. Intriguingly, we find that the measured cross-correlation can be well fitted by a DM component, with thermal annihilation cross section and mass between 10 and 100 GeV, depending on the small-scale DM properties and gamma-ray production mechanism. This solicits further data collection and dedicated analyses.