ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-loop effects on the right-handed neutrino masses can have an impact on the low-energy phenomenology, especially when the right-handed neutrino mass spectrum is very hierarchical at the cut-off scale. In this case, the physical masses of the light er right-handed neutrinos can be dominated by quantum effects induced by the heavier ones. Further, if the heaviest right-handed neutrino mass is at around the Planck scale, two-loop effects on the right-handed neutrino masses generate, through the seesaw mechanism, an active neutrino mass which is in the ballpark of the experimental values. In this paper we investigate extensions of the Planck-scale lepton number breaking scenario by additional Higgs doublets (inert or not). We find that under reasonable assumptions these models lead simultaneously to an overall neutrino mass scale and to a neutrino mass hierarchy in qualitative agreement with observations.
We demonstrate that megaton-mass neutrino telescopes are able to observe the signal from long-lived particles beyond the Standard Model, in particular the stau, the supersymmetric partner of the tau lepton. Its signature is an excess of charged parti cle tracks with horizontal arrival directions and energy deposits between 0.1 and 1 TeV inside the detector. We exploit this previously-overlooked signature to search for stau particles in the publicly available IceCube data. The data shows no evidence of physics beyond the Standard Model. We derive a new lower limit on the stau mass of $320$ GeV (95% C.L.) and estimate that this new approach, when applied to the full data set available to the IceCube collaboration, will reach world-leading sensitivity to the stau mass ($m_{tilde{tau}}=450,mathrm{GeV}$).
Within a multicomponent dark matter scenario, novel gamma-ray signals may arise from the decay of the heavier dark matter component into the lighter. For a scalar dark sector of this kind, the decay $phi_2rightarrowphi_1 gamma$ is forbidden by the co nservation of angular momentum, but the decay $phi_2 rightarrow phi_1 gammagamma$ can have a sizable or even dominant branching ratio. In this paper we present a detailed study of this decay channel. We determine the width and photon energy spectrum generated in the decay, employing an effective theory approach, and in UV complete models where the scalar dark matter components interact with heavy or light fermions. We also calculate limits on the inverse width from current data of the isotropic diffuse photon flux, both for a hierarchical and a degenerate dark matter spectrum. Finally, we briefly comment on the prospects of observing the diphoton signal from sneutrino decay in the minimal supersymmetric standard model extended with right-handed neutrino superfields ($tilde{ u}$MSSM).
We discuss the future prospects of heavy neutrino searches at next generation lepton colliders. In particular, we focus on the planned electron-positron colliders, operating in two different beam modes, namely, $e^+e^-$ and $e^-e^-$. In the $e^+e^-$ beam mode, we consider various production and decay modes of the heavy neutrino ($N$), and find that the final state with $e+2j+{E!!!/}_T$, arising from the $e^+e^-to N u$ production mode, is the most promising channel. However, since this mode is insensitive to the Majorana nature of the heavy neutrinos, we also study a new production channel $e^+e^-to Ne^pm W^mp$, which leads to a same-sign dilepton plus four jet final state, thus directly probing the lepton number violation in $e^+e^-$ colliders. In the $e^-e^-$ beam mode, we study the prospects of the lepton number violating process of $e^-e^-to W^-W^-$, mediated by a heavy Majorana neutrino. We use both cut-based and multivariate analysis techniques to make a realistic calculation of the relevant signal and background events, including detector effects for a generic linear collider detector. We find that with the cut-based analysis, the light-heavy neutrino mixing parameter $|V_{eN}|^2$ can be probed down to $sim 10^{-4}$ at 95% C.L. for the heavy neutrino mass up to $400$ GeV or so at $sqrt s=500$ GeV with $100 rm{fb}^{-1}$ of integrated luminosity. For smaller mixing values, we show that a multivariate analysis can improve the signal significance by up to an order of magnitude. These limits will be at least an order of magnitude better than the current best limits from electroweak precision data, as well as the projected limits from $sqrt s=14$ TeV LHC.
Three main strategies are being pursued to search for non-gravitational dark matter signals: direct detection, indirect detection and collider searches. Interestingly, experiments have reached sensitivities in these three search strategies which may allow detection in the near future. In order to take full benefit of the wealth of experimental data, and in order to confirm a possible dark matter signal, it is necessary to specify the nature of the dark matter particle and of the mediator to the Standard Model. In this paper, we focus on a simplified model where the dark matter particle is a Majorana fermion that couples to a light Standard Model fermion via a Yukawa coupling with a scalar mediator. We review the observational signatures of this model and we discuss the complementarity among the various search strategies, with emphasis in the well motivated scenario where the dark matter particles are produced in the early Universe via thermal freeze-out.
We investigate the signatures at the Large Hadron Collider of a minimal model where the dark matter particle is a Majorana fermion that couples to the Standard Model via one or several coloured mediators. We emphasize the importance of the production channel of coloured scalars through the exchange of a dark matter particle in the t-channel, and perform a dedicated analysis of searches for jets and missing energy for this model. We find that the collider constraints are highly competitive compared to direct detection, and can even be considerably stronger over a wide range of parameters. We also discuss the complementarity with searches for spectral features at gamma-ray telescopes and comment on the possibility of several coloured mediators, which is further constrained by flavour observables.
We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino o bservatories. If detected, such a signal could bring an independent confirmation of the dark matter interpretation of the dramatic rise in the positron fraction above 10 GeV recently observed by the PAMELA satellite experiment and offer the possibility of distinguishing between astrophysical sources and dark matter decay or annihilation. In combination with other signals, it may also be possible to distinguish among different dark matter decay channels.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا