ترغب بنشر مسار تعليمي؟ اضغط هنا

Einsteins theory of General Relativity implies that energy, i.e. matter, curves space-time and thus deforms lightlike geodesics, giving rise to gravitational lensing. This phenomenon is well understood in the case of the Schwarzschild metric, and has been accurately described in the past; however, lensing in the Kerr space-time has received less attention in the literature despite potential practical observational applications. In particular, lensing in such space is not expressible as the gradient of a scalar potential and as such is a source of curl-like signatures and an asymmetric shear pattern. In this paper, we develop a differentiable lensing map in the Kerr metric, reworking and extending previous approaches. By using standard tools of weak gravitational lensing, we isolate and quantify the distortion that is uniquely induced by the presence of angular momentum in the metric. We apply this framework to the distortion induced by a Kerr-like foreground object on a distribution of background of sources. We verify that the new unique lensing signature is orders of magnitude below current observational bounds for a range of lens configurations.
We present a finely-binned tomographic weak lensing analysis of the Canada-France-Hawaii Telescope Lensing Survey, CFHTLenS, mitigating contamination to the signal from the presence of intrinsic galaxy alignments via the simultaneous fit of a cosmolo gical model and an intrinsic alignment model. CFHTLenS spans 154 square degrees in five optical bands, with accurate shear and photometric redshifts for a galaxy sample with a median redshift of zm =0.70. We estimate the 21 sets of cosmic shear correlation functions associated with six redshift bins, each spanning the angular range of 1.5<theta<35 arcmin. We combine this CFHTLenS data with auxiliary cosmological probes: the cosmic microwave background with data from WMAP7, baryon acoustic oscillations with data from BOSS, and a prior on the Hubble constant from the HST distance ladder. This leads to constraints on the normalisation of the matter power spectrum sigma_8 = 0.799 +/- 0.015 and the matter density parameter Omega_m = 0.271 +/- 0.010 for a flat Lambda CDM cosmology. For a flat wCDM cosmology we constrain the dark energy equation of state parameter w = -1.02 +/- 0.09. We also provide constraints for curved Lambda CDM and wCDM cosmologies. We find the intrinsic alignment contamination to be galaxy-type dependent with a significant intrinsic alignment signal found for early-type galaxies, in contrast to the late-type galaxy sample for which the intrinsic alignment signal is found to be consistent with zero.
The combination of current large scale structure and cosmic microwave background (CMB) anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with CMB constr aints, can provide the statistical accuracy required to answer questions about differences in the mass of individual neutrino species. Allowing for the possibility that masses are non-degenerate we combine Fisher matrix forecasts for a weak lensing survey like Euclid with those for the forthcoming Planck experiment. Under the assumption that neutrino mass splitting is described by a normal hierarchy we find that the combination Planck and Euclid will possibly reach enough sensitivity to put a constraint on the mass of a single species. Using a Bayesian evidence calculation we find that such future experiments could provide strong evidence for either a normal or an inverted neutrino hierachy. Finally we show that if a particular neutrino hierachy is assumed then this could bias cosmological parameter constraints, for example the dark energy equation of state parameter, by > 1sigma, and the sum of masses by 2.3sigma.
We present the result of a decomposition of the 2dFGRS galaxy overdensity field into an orthonormal basis of spherical harmonics and spherical Bessel functions. Galaxies are expected to directly follow the bulk motion of the density field on large sc ales, so the absolute amplitude of the observed large-scale redshift-space distortions caused by this motion is expected to be independent of galaxy properties. By splitting the overdensity field into radial and angular components, we linearly model the observed distortion and obtain the cosmological constraint Omega_m^{0.6} sigma_8=0.46+/-0.06. The amplitude of the linear redshift-space distortions relative to the galaxy overdensity field is dependent on galaxy properties and, for L_* galaxies at redshift z=0, we measure beta(L_*,0)=0.58+/-0.08, and the amplitude of the overdensity fluctuations b(L_*,0) sigma_8=0.79+/-0.03, marginalising over the power spectrum shape parameters. Assuming a fixed power spectrum shape consistent with the full Fourier analysis produces very similar parameter constraints.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا