ترغب بنشر مسار تعليمي؟ اضغط هنا

In the early two-thousands, Recursive Petri nets have been introduced in order to model distributed planning of multi-agent systems for which counters and recursivity were necessary. Although Recursive Petri nets strictly extend Petri nets and contex t-free grammars, most of the usual problems (reachability, coverability, finiteness, boundedness and termination) were known to be solvable by using non-primitive recursive algorithms. For almost all other extended Petri nets models containing a stack, the complexity of coverability and termination are unknown or strictly larger than EXPSPACE. In contrast, we establish here that for Recursive Petri nets, the coverability, termination, boundedness and finiteness problems are EXPSPACE-complete as for Petri nets. From an expressiveness point of view, we show that coverability languages of Recursive Petri nets strictly include the union of coverability languages of Petri nets and context-free languages. Thus we get a more powerful model than Petri net for free.
127 - Florent Bouchy 2008
We tackle the issue of representing infinite sets of real- valued vectors. This paper introduces an operator for combining integer and real sets. Using this operator, we decompose three well-known logics extending Presburger with reals. Our decomposi tion splits a logic into two parts : one integer, and one decimal (i.e. on the interval [0,1]). We also give a basis for an implementation of our representation.
139 - Alain Finkel 2008
Number Decision Diagrams (NDD) provide a natural finite symbolic representation for regular set of integer vectors encoded as strings of digit vectors (least or most significant digit first). The convex hull of the set of vectors represented by a NDD is proved to be an effectively computable convex polyhedron.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا