ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe an algorithm which has been developed to extract fine granularity information from an electromagnetic calorimeter with strip-based readout. Such a calorimeter, based on scintillator strips, is being developed to apply particle flow recons truction to future experiments in high energy physics. Tests of this algorithm in full detector simulations, using strips of size 45 x 5 mm^2 show that the performance is close to that of a calorimeter with true 5 x 5 mm^2 readout granularity. The performance can be further improved by the use of 10 x 10 mm^2 tile- shaped layers interspersed between strip layers.
One of the major physics goals at the ILC is the precise measurement of the Higgs coupling constants to b-quarks and c-quarks. To achieve this measurement, we need a high-performance vertex detector leading to precise flavor tagging. For this purpose , we are developing the Fine Pixel CCD (FPCCD) vertex detector. In this paper, we will report on the development status of FPCCDTrackFinder, a new track finder improving tracking efficiency, especially in the low $p_t$ region, and an evaluation result of the flavor tagging performance with FPCCDTrackFinder in the FPCCD vertex detector.
Precise measurement of the Higgs boson properties are important issues for the International Linear Collider (ILC) project to understand the particles mass generation mechanism which strongly related to the coupling with the Higgs boson. Large Hadron Collider (LHC) experiments exclude the large area of the predicted Higgs mass region and their results indicate that Higgs boson mass will be light. Even if LHC discovers the Higgs like particle by the end of 2012, Higgs will be identified by the high precision measurement of the Higgs boson properties in ILC and also Higgs measurement verifies the correctness of standard model (SM) or gives some hints toward its beyond. In this study, we evaluate the measurement accuracies of Higgs branching fraction to the H->bb, cc and gg at the center-of-mass energy of 250 and 350 GeV.
We fabricated a readout ASIC with the fully depleted silicon-on-insulator (FD-SOI) technology for the pair-monitor. The pair-monitor is a silicon pixel device that measures the beam profile of the international linear collider. It utilizes the direct ional distribution of a large number of electron-positron pairs created by collision of bunches, and is required to tolerate radiation dose of about a few Mrad/year. The irradiation might cause the buried oxide layer of SOI to accumulate charges which interfere with intended functions. We thus performed extensive irradiation tests on the prototype ASIC, and the results are described in this paper.
We are developing the vertex detector with a fine pixel CCD (FPCCD) for the international linear collider (ILC), whose pixel size is $5 times 5$ $mu$m$^{2}$. To evaluate the performance of the FPCCD vertex detector and optimize its design, developmen t of the software dedicated for the FPCCD is necessary. We, therefore, started to develop the software for FPCCD. In this article, the status of the study is reported.
28 - Akiya Miyamoto 2007
The Detector Concept Report (DCR) consists of two parts, one for the physics and the other for ILC detectors. It has been prepared as the accompany document of the ILC Accelerator Reference Design Report. The detector DCR describes ILC detector desig ns, R&Ds on detector technologies and expected performances. The overview of the Detector DCR and the plan for the final release are presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا