ترغب بنشر مسار تعليمي؟ اضغط هنا

The tube method or the volume-of-tube method approximates the tail probability of the maximum of a smooth Gaussian random field with zero mean and unit variance. This method evaluates the volume of a spherical tube about the index set, and then trans forms it to the tail probability. In this study, we generalize the tube method to a case in which the variance is not constant. We provide the volume formula for a spherical tube with a non-constant radius in terms of curvature tensors, and the tail probability formula of the maximum of a Gaussian random field with inhomogeneous variance, as well as its Laplace approximation. In particular, the critical radius of the tube is generalized for evaluation of the asymptotic approximation error. As an example, we discuss the approximation of the largest eigenvalue distribution of the Wishart matrix with a non-identity matrix parameter. The Bonferroni method is the tube method when the index set is a finite set. We provide the formula for the asymptotic approximation error for the Bonferroni method when the variance is not constant.
We investigate upper and lower hedging prices of multivariate contingent claims from the viewpoint of game-theoretic probability and submodularity. By considering a game between Market and Investor in discrete time, the pricing problem is reduced to a backward induction of an optimization over simplexes. For European options with payoff functions satisfying a combinatorial property called submodularity or supermodularity, this optimization is solved in closed form by using the Lovasz extension and the upper and lower hedging prices can be calculated efficiently. This class includes the options on the maximum or the minimum of several assets. We also study the asymptotic behavior as the number of game rounds goes to infinity. The upper and lower hedging prices of European options converge to the solutions of the Black-Scholes-Barenblatt equations. For European options with submodular or supermodular payoff functions, the Black-Scholes-Barenblatt equation is reduced to the linear Black-Scholes equation and it is solved in closed form. Numerical results show the validity of the theoretical results.
We study the distribution of the ratio of two central Wishart matrices with different covariance matrices. We first derive the density function of a particular matrix form of the ratio and show that its cumulative distribution function can be express ed in terms of the hypergeometric function 2F1 of a matrix argument. Then we apply the holonomic gradient method for numerical evaluation of the hypergeometric function. This approach enables us to compute the power function of Roys maximum root test for testing the equality of two covariance matrices.
A holonomic system for the probability density function of the largest eigenvalue of a non-central complex Wishart distribution with identity covariance matrix is derived. Furthermore a new determinantal formula for the probability density function is derived (for m=2,3) or conjectured.
We study the behavior of the capital process of a continuous Bayesian mixture of fixed proportion betting strategies in the one-sided unbounded forecasting game in game-theoretic probability. We establish the relation between the rate of convergence of the strong law of large numbers in the self-normalized form and the rate of divergence to infinity of the prior density around the origin. In particular we present prior densities ensuring the validity of Erdos-Feller-Kolmogorov-Petrowsky law of the iterated logarithm.
We show that the distribution of the scalar Schur complement in a noncentral Wishart matrix is a mixture of central chi-square distributions with different degrees of freedom. For the case of a rank-1 noncentrality matrix, the weights of the mixture representation arise from a noncentral beta mixture of Poisson distributions.
260 - Akimichi Takemura 2015
We present a short proof of the fact that the exponential decay rate of partial autocorrelation coefficients of a short-memory process, in particular an ARMA process, is equal to the exponential decay rate of the coefficients of its infinite autoregressive representation.
We give a bijection between a quotient space of the parameters and the space of moments for any $A$-hypergeometric distribution. An algorithmic method to compute the inverse image of the map is proposed utilizing the holonomic gradient method and an asymptotic equivalence of the map and the iterative proportional scaling. The algorithm gives a method to solve a conditional maximum likelihood estimation problem in statistics. Our interplay between the theory of hypergeometric functions and statistics gives some new formulas of $A$-hypergeometric polynomials.
We study zero-forcing detection (ZF) for multiple-input/multiple-output (MIMO) spatial multiplexing under transmit-correlated Rician fading for an N_R X N_T channel matrix with rank-1 line-of-sight (LoS) component. By using matrix transformations and multivariate statistics, our exact analysis yields the signal-to-noise ratio moment generating function (m.g.f.) as an infinite series of gamma distribution m.g.f.s and analogous series for ZF performance measures, e.g., outage probability and ergodic capacity. However, their numerical convergence is inherently problematic with increasing Rician K-factor, N_R , and N_T. We circumvent this limitation as follows. First, we derive differential equations satisfied by the performance measures with a novel automated approach employing a computer-algebra tool which implements Groebner basis computation and creative telescoping. These differential equations are then solved with the holonomic gradient method (HGM) from initial conditions computed with the infinite series. We demonstrate that HGM yields more reliable performance evaluation than by infinite series alone and more expeditious than by simulation, for realistic values of K , and even for N_R and N_T relevant to large MIMO systems. We envision extending the proposed approaches for exact analysis and reliable evaluation to more general Rician fading and other transceiver methods.
We prove an Erdos-Feller-Kolmogorov-Petrowsky law of the iterated logarithm for self-normalized martingales. Our proof is given in the framework of the game-theoretic probability of Shafer and Vovk. As many other game-theoretic proofs, our proof is self-contained and explicit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا