ترغب بنشر مسار تعليمي؟ اضغط هنا

71 - Rajesh Kumar Gupta 2021
Disordered systems are interesting for many physical reasons. In this article, we study the renormalization group property of quenched disorder systems in the presence of a boundary. We construct examples of scalar field theories in various dimension s with both classical and quantum disorder localized at the boundary. We study these theories in $e$-expansion and discuss properties of fixed points of the renormalization group flow.
The solar photosphere, chromosphere and corona are known to rotate differentially as a function of latitude. To date, it is unclear if the solar transition region also rotates differentially. In this paper, we investigate differential rotational prof ile of solar transition region as a function of latitude, using solar full disk (SFD) images at 30.4 nm wavelength recorded by Extreme Ultraviolet Imager (EUVI) onboard Solar Terrestrial Relations Observatory (STEREO) space mission for the period from 2008 to 2018 (Solar Cycle 24). Our investigations show that solar transition region rotates differentially. The sidereal rotation rate obtained at +/- 5 degree equatorial band is quite high (~ 14.7 degree/day), which drops to ~ 13.6 degree/day towards both polar regions. We also obtain that the rotational differentiality is low during the period of high solar activity (rotation rate varies from 14.86 to 14.27 degree/day) while it increases during the ascending and the descending phases of the 24th solar cycle (rotation rate varies from 14.56 to 13.56 degree/day in 2008 and 14.6 to 13.1 degree/day in 2018). Average sidereal rotation rate (over SFD) follows the trend of solar activity (maximum ~ 14.97 degree/day during the peak phase of the solar activity, which slowly decreases to minimum ~ 13.9 degree/day during ascending and the descending phases of the 24th solar cycle). We also observe that solar transition region rotates less differentially than the corona.
Optical, near-infrared (NIR) photometric and spectroscopic studies, along with the optical imaging polarimetric results for SN 2012au, are presented in this article to constrain the nature of the progenitor and other properties. Well-calibrated multi band optical photometric data (from $-$0.2 to +413 d since $B$-band maximum) were used to compute the bolometric light curve and to perform semi-analytical light-curve modelling using the $texttt{MINIM}$ code. A spin-down millisecond magnetar-powered model explains the observed photometric evolution of SN 2012au reasonably. Early-time imaging polarimetric follow-up observations ($-$2 to +31 d) and comparison with other similar cases indicate signatures of asphericity in the ejecta. Good spectral coverage of SN 2012au (from $-$5 to +391 d) allows us to trace the evolution of layers of SN ejecta in detail. SN 2012au exhibits higher line velocities in comparison with other SNe Ib. Late nebular phase spectra of SN 2012au indicate a Wolf$-$Rayet star as the possible progenitor for SN 2012au, with oxygen, He-core, and main-sequence masses of $sim$1.62 $pm$ 0.15 M$_odot$, $sim$4$-$8 M$_odot$, and $sim$17$-$25 M$_odot$, respectively. There is a clear absence of a first overtone of carbon monoxide (CO) features up to +319 d in the $K$-band region of the NIR spectra. Overall analysis suggests that SN 2012au is one of the most luminous slow-decaying Type Ib SNe, having comparatively higher ejecta mass ($sim$4.7$-$8.3 M$_odot$) and kinetic energy ($sim$[4.8 $-$ 5.4] $times$ 10$^{51}$ erg). Detailed modelling using $texttt{MESA}$ and the results obtained through $texttt{STELLA}$ and $texttt{SNEC}$ explosions also strongly support spin-down of a magnetar with mass of around 20 M$_odot$ and metallicity Z = 0.04 as a possible powering source of SN 2012au.
The present paper deals with the gravitational collapse of an inhomogeneous spherical star consisting of dust fluid in the background of dark energy components with linear equation of state. We discussed the development of apparent horizon to investi gate the black-hole formation in gravitational collapsing process. The collapsing process is examined first separately for dust cloud and dark energy and then under the combined effect of dust interacting with dark energy. It is obtained that when only dust cloud or dark energy is present the collapse leads to the formation of black-hole under certain conditions. When both of them are present, collapsing star does not form black-hole. However when dark energy is considered as cosmological constant, the collapse leads to black hole formation.
In this paper, we considered the gravitational collapse of a symmetric radiating star consisting of perfect fluid (baryonic) in the background of dark energy (DE) with general equation of state. The effect of DE on the singularity formation has been discussed first separately (only DE present) and then combination of both baryonic and DE interaction. We have also showed that DE components play important role in the formation of Black-Hole(BH). In some cases the collapse of radiating star leads to black hole formation and in other cases it forms Naked-Singularity(or, eternally collapse). The present work is in itself remarkable to describe the effect of dark energy on singularity formation in radiating star.
Previous studies have demonstrated that commonly studied (vanilla) touch-based continuous authentication systems (V-TCAS) are susceptible to population attack. This paper proposes a novel Generative Adversarial Network assisted TCAS (G-TCAS) framewor k, which showed more resilience to the population attack. G-TCAS framework was tested on a dataset of 117 users who interacted with a smartphone and tablet pair. On average, the increase in the false accept rates (FARs) for V-TCAS was much higher (22%) than G-TCAS (13%) for the smartphone. Likewise, the increase in the FARs for V-TCAS was 25% compared to G-TCAS (6%) for the tablet.
162 - Mahak Sharma 2021
Conversational agents are a recent trend in human-computer interaction, deployed in multidisciplinary applications to assist the users. In this paper, we introduce Atreya, an interactive bot for chemistry enthusiasts, researchers, and students to stu dy the ChEMBL database. Atreya is hosted by Telegram, a popular cloud-based instant messaging application. This user-friendly bot queries the ChEMBL database, retrieves the drug details for a particular disease, targets associated with that drug, etc. This paper explores the potential of using a conversational agent to assist chemistry students and chemical scientist in complex information seeking process.
We investigate the observational properties of a hydrogen-deficient superluminous supernova (SLSN) SN 2020ank (at z = 0.2485), with the help of early phase observations carried out between $-$21 and +52 d since $g$-band maximum. Photometrically, SN 2 020ank is one of the brightest SLSN ($M_{g,peak}$ $sim$ $-$21.84 $pm$ 0.10 mag), having fast pre-peak rising and post-peak decaying rates. The bolometric light curve of SN 2020ank exhibits a higher peak luminosity ($L_{max}$) of $sim$(3.9 $pm$ 0.7) $times$ 10$^{44}$ erg s$^{-1}$ and appears to be symmetric around the peak with $L^{rise}_{max}$/e $approx$ $L^{fall}_{max}$/e $approx$ 15 d. The semi-analytical light-curve modelling using the MINIM code suggests a spin down millisecond magnetar with $P_i$ $sim$2.2 $pm$ 0.5 ms and $B$ $sim$(2.9 $pm$ 0.1) $times$ $10^{14}$ G as a possible powering source for SN 2020ank. The possible magnetar origin and excess ultraviolet flux at early epochs indicate a central-engine based powering source for SN 2020ank. Near-peak spectra of SN 2020ank are enriched with the W-shaped O II features but with the weaker signatures of C II and Fe III. Using the estimated rise time of $sim$27.9 d and the photospheric velocity of $sim$12050 km s$^{-1}$, we constrain the ejecta mass to $sim$7.2 $M_{odot}$ and the kinetic energy of $sim$6.3 $times$ 10$^{51}$ erg. The near-peak spectrum of SN 2020ank exhibits a close spectral resemblance with that of fast-evolving SN 2010gx. The absorption features of SN 2020ank are blueshifted compared to Gaia16apd, suggesting a higher expansion velocity. The spectral similarity with SN 2010gx and comparatively faster spectral evolution than PTF12dam (a slow-evolving SLSN) indicate the fast-evolving behavior of SN 2020ank.
We show that the insulating states of magic-angle twisted bilayer graphene support a series of collective modes corresponding to local particle-hole excitations on triangular lattice sites. Our theory is based on a continuum model of the magic angle flat bands. When the system is insulating at moire band filling $ u=-3$, our calculations show that the ground state supports seven low-energy modes that lie well below the charge gap throughout the moire Brillouin zone, one of which couples strongly to THz photons. The low-energy collective modes are faithfully described by a model with a local $SU(8)$ degree of freedom in each moire unit cell that we identify as the direct product of spin, valley, and an orbital pseudospin. Apart from spin and valley-wave modes, the collective mode spectrum includes a low-energy intra-flavor exciton mode associated with transitions between flat valence and conduction band orbitals.
In this article, we report an evidence of very high and statistically significant relationship between hemispheric asymmetry in solar coronal rotation rate and solar activity. Our approach is based on cross correlation of hemispheric asymmetry index (AI) in rotation rate with annual solar activity indicators. To obtain hemispheric asymmetry in solar rotation rate, we use solar full disc (SFD) images at 30.4 nm, 19.5 nm, and 28.4 nm wavelengths for 24th Solar Cycle i.e., for the period from 2008 to 2018, as recorded by the Solar Terrestrial Relations Observatory (STEREO) space mission. Our analysis shows that hemispheric asymmetry in rotation rate is high during the solar maxima from 2011 to 2014. On the other hand, hemispheric asymmetry drops gradually on both sides (i.e., from 2008 to 2011 and from 2014 to 2018). The results show that asymmetry index (AI) leads sunspot numbers by ~1.56 years. This gives a clear indication that hemispheric asymmetry triggers the formation of sunspots working together with the differential rotation of the Sun.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا