ترغب بنشر مسار تعليمي؟ اضغط هنا

The effects of compressibility on Rayleigh-Taylor instability (RTI) are investigated by inspecting the interplay between thermodynamic and hydrodynamic non-equilibrium phenomena (TNE, HNE, respectively) via a discrete Boltzmann model (DBM). Two effec tive approaches are presented, one tracking the evolution of the emph{local} TNE effects and the other focussing on the evolution of the mean temperature of the fluid, to track the complex interfaces separating the bubble and the spike regions of the flow. It is found that, both the compressibility effects and the emph{global} TNE intensity show opposite trends in the initial and the later stages of the RTI. Compressibility delays the initial stage of RTI and accelerates the later stage. Meanwhile, the TNE characteristics are generally enhanced by the compressibility, especially in the later stage. The global or mean thermodynamic non-equilibrium indicators provide physical criteria to discriminate between the two stages of the RTI.
Shock wave reaction results in various characteristic regimes in porous material. The geometrical and topological properties of these regimes are highly concerned in practical applications. Via the morphological analysis to characteristic regimes wit h high temperature, we investigate the thermodynamics of shocked porous materials whose mechanical properties cover a wide range from hyperplasticity to elasticity. It is found that, under fixed shock strength, the total fractional area $A$ of the high-temperature regimes with $T geq T_{th}$ and its saturation value first increase, then decrease with the increasing of the initial yield $sigma_{Y0}$, where $T_{th}$ is a given threshold value of temperature $T$. In the shock-loading procedure, the fractional area $A(t)$ may show the same behavior if $T_{th}$ and $sigma_{Y0}$ are chosen appropriately. Under the same $A(t)$ behavior, $T_{th}$ first increases then decreases with $sigma_{Y0}$. At the maximum point $sigma_{Y0M}$, the shock wave contributes the maximum plastic work. Around $sigma_{Y0M}$, two materials with different mechanical properties may share the same $A(t)$ behavior even for the same $T_{th}$. The characteristic regimes in the material with the larger $sigma_{Y0}$ are more dispersed.
A new multiple-relaxation-time lattice Boltzmann scheme for compressible flows with arbitrary specific heat ratio and Prandtl number is presented. In the new scheme, which is based on a two-dimensional 16-discrete-velocity model, the moment space and the corresponding transformation matrix are constructed according to the seven-moment relations associated with the local equilibrium distribution function. In the continuum limit, the model recovers the compressible Navier-Stokes equations with flexible specific-heat ratio and Prandtl number. Numerical experiments show that compressible flows with strong shocks can be simulated by the present model up to Mach numbers $Ma sim 5$.
We numerically study trajectories of spiral-wave-cores in excitable systems modulated proportionally to the integral of the activity on the straight line, several or dozens of equi-spaced measuring points on the straight line, the double-line and the contour-line. We show the single-line feedback results in the drift of core center along a straight line being parallel to the detector. An interesting finding is that the drift location in $y$ is a piecewise linear-increasing function of both the feedback line location and time delay. Similar trajectory occurs when replacing the feedback line with several or dozens of equi-spaced measuring points on the straight line. This allows to move the spiral core to the desired location along a chosen direction by measuring several or dozens of points. Under the double-line feedback, the shape of the tip trajectory representing the competition between the first and second feedback lines is determined by the distance of two lines. Various drift attractors in spiral wave controlled by square-shaped contour-line feedback are also investigated. A brief explanation is presented.
The description of complex configuration is a difficult issue. We present a powerful technique for cluster identification and characterization. The scheme is designed to treat with and analyze the experimental and/or simulation data from various meth ods. Main steps are as follows. We first divide the space using face or volume elements from discrete points. Then, combine the elements with the same and/or similar properties to construct clusters with special physical characterizations. In the algorithm, we adopt administrative structure of hierarchy-tree for spatial bodies such as points, lines, faces, blocks, and clusters. Two fast search algorithms with the complexity are realized. The establishing of the hierarchy-tree and the fast searching of spatial bodies are general, which are independent of spatial dimensions. Therefore, it is easy to extend the skill to other fields. As a verification and validation, we treated with and analyzed some two-dimensional and three-dimensional random data.
We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. This model is based on a 16-discrete-velocity model. The collision step is first calculated in the moment space and then mapped back to the velocity space. The moment space and corresponding transformation matrix are constructed according to the group representation theory. Equilibria of the nonconserved moments are chosen according to the need of recovering compressible Navier-Stokes equations through the Chapman-Enskog expansion. Numerical experiments showed that compressible flows with strong shocks can be well simulated by the present model. The used benchmark tests include (i) shock tubes, such as the Sod, Lax, Sjogreen, Colella explosion wave and collision of two strong shocks, (ii) regular and Mach shock reflections, and (iii) shock wave reaction on cylindrical bubble problems. The new model works for both low and high speeds compressible flows. It contains more physical information and has better numerical stability and accuracy than its single-relaxation-time version.
We study liquid-vapor phase separation under shear via the Shan-Chen lattice Boltzmann model. Besides the rheological characteristics, we analyze the Kelvin-Helmholtz(K-H) instability resulting from the tangential velocity difference of the fluids on two sides of the interface. We discuss also the growth behavior of droplets. The domains being close to the walls are lamellar-ordered, where the hydrodynamic effects dominate. The patterns in the bulk of the system are nearly isotropic, where the domain growth results mainly from the diffusion mechanism. Both the interfacial tension and the K-H instability make the liquid-bands near the walls tend to rupture. When the shear rate increases, the inequivalence of evaporation in the upstream and coagulation in the downstream of the flow as well as the role of surface tension makes the droplets elongate obliquely. Stronger convection makes easier the transferring of material particles so that droplets become larger.
Direct modeling of porous materials under shock is a complex issue. We investigate such a system via the newly developed material-point method. The effects of shock strength and porosity size are the main concerns. For the same porosity, the effects of mean-void-size are checked. It is found that, local turbulence mixing and volume dissipation are two important mechanisms for transformation of kinetic energy to heat. When the porosity is very small, the shocked portion may arrive at a dynamical steady state; the voids in the downstream portion reflect back rarefactive waves and result in slight oscillations of mean density and pressure; for the same value of porosity, a larger mean-void-size makes a higher mean temperature. When the porosity becomes large, hydrodynamic quantities vary with time during the whole shock-loading procedure: after the initial stage, the mean density and pressure decrease, but the temperature increases with a higher rate. The distributions of local density, pressure, temperature and particle-velocity are generally non-Gaussian and vary with time. The changing rates depend on the porosity value, mean-void-size and shock strength. The stronger the loaded shock, the stronger the porosity effects. This work provides a supplement to experiments for the very quick procedures and reveals more fundamental mechanisms in energy and momentum transportation.
Morphological measures are introduced to probe the complex procedure of shock wave reaction on porous material. They characterize the geometry and topology of the pixelized map of a state variable like the temperature. Relevance of them to thermodyna mical properties of material is revealed and various experimental conditions are simulated. Numerical results indicate that, the shock wave reaction results in a complicated sequence of compressions and rarefactions in porous material. The increasing rate of the total fractional white area $A$ roughly gives the velocity $D$ of a compressive-wave-series. When a velocity $D$ is mentioned, the corresponding threshold contour-level of the state variable, like the temperature, should also be stated. When the threshold contour-level increases, $D$ becomes smaller. The area $A$ increases parabolically with time $t$ during the initial period. The $A(t)$ curve goes back to be linear in the following three cases: (i) when the porosity $delta$ approaches 1, (ii) when the initial shock becomes stronger, (iii) when the contour-level approaches the minimum value of the state variable. The area with high-temperature may continue to increase even after the early compressive-waves have arrived at the downstream free surface and some rarefactive-waves have come back into the target body. In the case of energetic material ... (see the full text)
In this paper we present an improved lattice Boltzmann model for compressible Navier-Stokes system with high Mach number. The model is composed of three components: (i) the discrete-velocity-model by Watari and Tsutahara [Phys Rev E textbf{67},036306 (2003)], (ii) a modified Lax-Wendroff finite difference scheme where reasonable dissipation and dispersion are naturally included, (iii) artificial viscosity. The improved model is convenient to compromise the high accuracy and stability. The included dispersion term can effectively reduce the numerical oscillation at discontinuity. The added artificial viscosity helps the scheme to satisfy the von Neumann stability condition. Shock tubes and shock reflections are used to validate the new scheme. In our numerical tests the Mach numbers are successfully increased up to 20 or higher. The flexibility of the new model makes it suitable for tracking shock waves with high accuracy and for investigating nonlinear nonequilibrium complex systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا