ترغب بنشر مسار تعليمي؟ اضغط هنا

The stacking orders in layered hexagonal boron nitride bulk and bilayers are studied using high-level ab initio theory (local second-order Moller-Plesset perturbation theory, LMP2). Our results show that both electrostatic and London dispersion inter actions are responsible for interlayer distance and stacking order, with AA being the most stable one. The minimum energy sliding path includes only the AA high-symmetry stacking, and the energy barrier is 3.4 meV per atom for the bilayer. State-of-the-art Density-functionals with and without London dispersion correction fail to correctly describe the interlayer energies with the exception of PBEsol that agrees very well with our LMP2 results and experiment.
Quantum conductance calculations on the mechanically deformed monolayers of MoS$_2$ and WS$_2$ were performed using the non-equlibrium Greens functions method combined with the Landauer-B{u}ttiker approach for ballistic transport together with the de nsity-functional based tight binding (DFTB) method. Tensile strain and compression causes significant changes in the electronic structure of TMD single layers and eventually the transition semiconductor-metal occurs for elongations as large as ~11% for the 2D-isotropic deformations in the hexagonal structure. This transition enhances the electron transport in otherwise semiconducting materials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا