ترغب بنشر مسار تعليمي؟ اضغط هنا

At finite temperatures and magnetic fields, type-II superconductors in the mixed state have a non-zero resistance that is overwhelmingly associated with vortex motion. In this work we study amorphous indium oxide films, which are thicker than the sup erconducting coherence length, and show that near $B_{c2}$ their resistance in the presence of perpendicular and in-plane magnetic fields becomes almost isotropic. Up to a linear rescaling of the magnetic fields both the equilibrium resistance as well as the non-equilibrium current-voltage characteristics are insensitive to magnetic field orientation suggesting that, for our superconductors, there is no fundamental difference in transport between perpendicular and in-plane magnetic fields. Additionally we show that this near-isotropic behavior extends to the insulating phase of amorphous indium oxide films of larger disorder strength that undergo a magnetic field driven superconductor-insulator transition. This near-isotropic behavior raises questions regarding the role of vortices in transport and the origin of resistance in thin-film superconductors.
An increasing current through a superconductor can result in a discontinuous increase in the differential resistance at the critical current. This critical current is typically associated either with breaking of Cooper-pairs (de-pairing) or with a co llective motion of vortices (de-pinning). In this work we measure superconducting amorphous indium oxide films at low temperatures and high magnetic fields. Using heat-balance considerations we demonstrate that the current-voltage characteristics are well explained by electron overheating that occurs due to the thermal decoupling of the electrons from the host phonons. As a result the electrons overheat to a significantly higher temperature than that of the lattice. By solving the heat-balance equation we are able to accurately predict the critical currents in a variety of experimental conditions. The heat-balance approach stems directly from energy conservation. As such it is universal and applies to diverse situations from critical currents in superconductors to climate bi-stabilities that can initiate another ice-age. One disadvantage of the universal nature of this approach is that it is insensitive to the microscopic details of the system, which limits our ability to draw conclusions regarding the initial departure from equilibrium.
Highly disordered superconductors have a rich phase diagram. At a moderate magnetic field (B) the samples go through the superconductor-insulator quantum phase transition. In the insulating phase, the resistance increases sharply with B up to a magne to-resistance peak beyond which the resistance drops with B. In this manuscript we follow the temperature (T) evolution of this magneto-resistance peak. We show that as T is reduced, the peak appears at lower Bs approaching the critical field of the superconductor-insulator transition. Due to experimental limitations we are unable to determine whether the T=0 limiting position of the peak matches that of the critical field or is at comparable but slightly higher B. We show that, although the peak appears at different B values, its resistance follows an activated T dependence over a large T range with a prefactor that is very similar to the quantum of resistance for cooper-pairs.
Highly disordered superconductors, in the magnetic-field-driven insulating state, can show discontinuous current-voltage characteristics. Electron overheating has been shown to give a consistent description of this behavior, but there are other, more exotic, explanations including a novel, superinsulating state and a many-body localized state. We present AC-DC crossed-measurements, in which the application of a DC voltage is applied along our sample, while a small AC voltage is applied in the transverse direction. We varied the DC voltage and observed a simultaneous discontinuity in both AC and DC currents. We show that the inferred electron-temperature in the transverse measurement matches that in the longitudinal one, strongly supporting electron overheating as the source of observed current-voltage characteristics. Our measurement technique may be applicable as a method of probing electron overheating in many other physical systems, which show discontinuous or non-linear current-voltage characteristics.
Thin films of Amorphous indium oxide undergo a magnetic field driven superconducting to insulator quantum phase transition. In the insulating phase, the current-voltage characteristics show large current discontinuities due to overheating of electron s. We show that the onset voltage for the discontinuities vanishes as we approach the quantum critical point. As a result the insulating phase becomes unstable with respect to any applied voltage making it, at least experimentally, immeasurable. We emphasize that unlike previous reports of the absence of linear response near quantum phase transitions, in our system, the departure from equilibrium is discontinuous. Because the conditions for these discontinuities are satisfied in most insulators at low temperatures, and due to the decay of all characteristic energy scales near quantum phase transitions, we believe that this instability is general and should occur in various systems while approaching their quantum critical point. Accounting for this instability is crucial for determining the critical behavior of systems near the transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا