ترغب بنشر مسار تعليمي؟ اضغط هنا

The description of dynamics of strongly correlated quantum matter is a challenge, particularly in physical situations where a quasiparticle description is absent. In such situations, however, the many-body Kubo formula from linear response theory, in volving matrix elements of the current operator computed with many-body wavefunctions, remains valid. Working directly in the many-body Hilbert space and not making any reference to quasiparticles (or lack thereof), we address the puzzle of linear in temperature ($T$-linear) resistivity seen in non-Fermi liquid phases that occur in several strongly correlated condensed matter systems. We derive a simple criterion for the occurrence of $T$-linear resistivity based on an analysis of the contributions to the many-body Kubo formula, determined by an energy invariant $f$-function involving current matrix elements and energy eigenvalues that describes the DC conductivity of the system in the microcanonical ensemble. Using full diagonalization, we test this criterion for the $f$-function in the spinless nearest neighbor Hubbard model, and in a system of Sachdev-Ye-Kitaev dots coupled by weak single particle hopping. We also study the $f$-function for the spin conductivity in the 2D Heisenberg model with similar conclusions. Our work suggests that a general principle, formulated in terms of many-body Hilbert space concepts, is at the core of the occurrence of $T$-linear resistivity in a wide range of systems, and precisely translates $T$-linear resistivity into a notion of energy scale invariance far beyond what is typically associated with quantum critical points.
Even as the understanding of the mechanism behind correlated insulating states in magic-angle twisted bilayer graphene converges towards various kinds of spontaneous symmetry breaking, the metallic normal state above the insulating transition tempera ture remains mysterious, with its excessively high entropy and linear-in-temperature resistivity. In this work, we focus on the effects of fluctuations of the order-parameters describing correlated insulating states at integer fillings of the low-energy flat bands on charge transport. Motivated by the observation of heterogeneity in the order-parameter landscape at zero magnetic field in certain samples, we conjecture the existence of frustrating extended range interactions in an effective Ising model of the order-parameters on a triangular lattice. The competition between short-distance ferromagnetic interactions and frustrating extended range antiferromagnetic interactions leads to an emergent length scale that forms stripe-like mesoscale domains above the ordering transition. The gapless fluctuations of these heterogeneous configurations are found to be responsible for the linear-in-temperature resistivity as well as the enhanced low temperature entropy. Our insights link experimentally observed linear-in-temperature resistivity and enhanced entropy to the strength of frustration, or equivalently, to the emergence of mesoscopic length scales characterizing order-parameter domains.
We describe the large $N$ saddle point, and the structure of fluctuations about the saddle point, of a theory containing a sharp, critical Fermi surface in two spatial dimensions. The theory describes the onset of Ising order in a Fermi liquid, and c losely related theories apply to other cases with critical Fermi surfaces. We employ random couplings in flavor space between the fermions and the bosonic order parameter, but there is no spatial randomness: consequently, the $G$-$Sigma$ path integral of the theory is expressed in terms of fields bilocal in spacetime. The critical exponents of the large $N$ saddle-point are the same as in the well-studied non-random RPA theory; in particular, the entropy density vanishes in the limit of zero temperature. We present a full numerical solution of the large $N$ saddle-point equations, and the results agree with the critical behavior obtained analytically. Following analyses of Sachdev-Ye-Kitaev models, we describe scaling operators which descend from fermion bilinears around the Fermi surface. This leads to a systematic consideration of the role of time reparameterization symmetry, and the scaling of the Cooper pairing and $2k_F$ operators which can determine associated instabilities of the critical Fermi surface. We find no violations of scaling from time reparameterizations. We also consider the same model but with spatially random couplings: this provides a systematic large $N$ theory of a marginal Fermi liquid with Planckian transport.
We introduce an effective theory for quantum critical points in heavy fermion systems involving a change in carrier density without symmetry breaking. The new theory captures a strong coupling metallic fixed point, leading to robust marginal Fermi li quid transport phenomenology, within a controlled large $N$ limit. This is contrasted with the conventional so-called slave boson theory of the Kondo breakdown, where the large $N$ limit describes a weak coupling fixed point and non-trivial transport behavior may only be obtained through uncontrolled $1/N$ corrections. We compute the weak field Hall coefficient within the effective model as the system is tuned across the transition. We find that between the two plateaus, reflecting the different carrier densities in the two Fermi liquid phases, the Hall coefficient can develop a peak in the critical crossover regime, consistent with recent experimental findings. In the regime of strong damping of emergent bosonic excitations, the critical point also displays a near-universal Planckian transport lifetime, $tau_{mathrm{tr}}simhbar/(k_BT)$.
A theoretical understanding of the enigmatic linear-in-temperature ($T$) resistivity, ubiquitous in strongly correlated metallic systems, has been a long sought-after goal. Furthermore, the slope of this robust $T$-linear resistivity is also observed to stay constant through crossovers between different temperature regimes: a phenomenon we dub slope invariance. Recently, several solvable models with $T$-linear resistivity have been proposed, putting us in an opportune moment to compare their inner workings in various explicit calculations. We consider two strongly correlated models with local self-energies that demonstrate $T$-linearity: a lattice of coupled Sachdev-Ye-Kitaev (SYK) models and the Hubbard model in single-site dynamical mean-field theory (DMFT). We find that the two models achieve $T$-linearity through distinct mechanisms at intermediate temperatures. However, we also find that these mechanisms converge to an identical form at high temperatures. Surprisingly, both models exhibit slope invariance across the two temperature regimes. We thus not only reveal some of the diversity in the theoretical inner workings that can lead to $T$-linear resistivity, but we also establish that different mechanisms can result in slope invarance.
We compute the scrambling rate at the antiferromagnetic (AFM) quantum critical point, using the fixed point theory of Phys. Rev. X $boldsymbol{7}$, 021010 (2017). At this strongly coupled fixed point, there is an emergent control parameter $w ll 1$ t hat is a ratio of natural parameters of the theory. The strong coupling is unequally felt by the two degrees of freedom: the bosonic AFM collective mode is heavily dressed by interactions with the electrons, while the electron is only marginally renormalized. We find that the scrambling rates act as a measure of the degree of integrability of each sector of the theory: the Lyapunov exponent for the boson $lambda_L^{(B)} sim mathcal O(sqrt{w}) ,k_B T/hbar$ is significantly larger than the fermion one $lambda_L^{(F)} sim mathcal O(w^2) ,k_B T/hbar$, where $T$ is the temperature. Although the interaction strength in the theory is of order unity, the larger Lyapunov exponent is still parametrically smaller than the universal upper bound of $lambda_L=2pi k_B T/hbar$. We also compute the spatial spread of chaos by the boson operator, whose low-energy propagator is highly non-local. We find that this non-locality leads to a scrambled region that grows exponentially fast, giving an infinite butterfly velocity of the chaos front, a result that has also been found in lattice models with long-range interactions.
We present a lattice model of fermions with $N$ flavors and random interactions which describes a Planckian metal at low temperatures, $T rightarrow 0$, in the solvable limit of large $N$. We begin with quasiparticles around a Fermi surface with effe ctive mass $m^ast$, and then include random interactions which lead to fermion spectral functions with frequency scaling with $k_B T/hbar$. The resistivity, $rho$, obeys the Drude formula $rho = m^ast/(n e^2 tau_{textrm{tr}})$, where $n$ is the density of fermions, and the transport scattering rate is $1/tau_{textrm{tr}} = f , k_B T/hbar$; we find $f$ of order unity, and essentially independent of the strength and form of the interactions. The random interactions are a generalization of the Sachdev-Ye-Kitaev models; it is assumed that processes non-resonant in the bare quasiparticle energies only renormalize $m^ast$, while resonant processes are shown to produce the Planckian behavior.
Building upon techniques employed in the construction of the Sachdev-Ye-Kitaev (SYK) model, which is a solvable $0+1$ dimensional model of a non-Fermi liquid, we develop a solvable, infinite-ranged random-hopping model of fermions coupled to fluctuat ing U(1) gauge fields. In a specific large-$N$ limit, our model realizes a gapless non-Fermi liquid phase, which combines the effects of hopping and interaction terms. We derive the thermodynamic properties of the non-Fermi liquid phase realized by this model, and the charge transport properties of an infinite-dimensional version with spatial structure.
A mysterious incoherent metallic (IM) normal state with $T$-linear resistivity is ubiquitous among strongly correlated superconductors. Recent progress with microscopic models exhibiting IM transport has presented the opportunity for us to study new models that exhibit direct transitions into a superconducting state out of IM states within the framework of connected Sachdev-Ye-Kitaev (SYK) quantum dots. Here local SYK interactions within a dot produce IM transport in the normal state, while local attractive interactions drive superconductivity. Through explicit calculations, we find two features of superconductivity arising from an IM normal state: First, despite the absence of quasiparticles in the normal state, the superconducting state still exhibits coherent superfluid transport. Second, the non-quasiparticle nature of the IM Greens functions produces a large enhancement in the ratio of the zero-temperature superconducting gap $Delta$ and transition temperature $T_{sc}$, $2Delta/T_{sc}$, with respect to its BCS value of $3.53$.
We calculate the thermopower of monolayer graphene in various circumstances. First we show that experiments on the thermopower of graphene can be understood quantitatively with a very simple model of screening in the semiclassical limit. We can calcu late the energy dependent scattering time for this model exactly. We then consider acoustic phonon scattering which might be the operative scattering mechanism in free standing films, and predict that the thermopower will be linear in any induced gap in the system. Further, the thermopower peaks at the same value of chemical potential (tunable by gate voltage) independent of the gap. Finally, we show that in the semiclassical approximation, the thermopower in a magnetic field saturates at high field to a value which can be calculated exactly and is independent of the details of the scattering. This effect might be observable experimentally.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا