ترغب بنشر مسار تعليمي؟ اضغط هنا

350 - Daniele Bertacca 2015
We discuss the question of gauge choice when analysing relativistic density perturbations at second order. We compare Newtonian and General Relativistic approaches. Some misconceptions in the recent literature are addressed. We show that the comoving -synchronous gauge is the unique gauge in General Relativity that corresponds to the Lagrangian frame and is entirely appropriate to describe the matter overdensity at second order. The comoving-synchronous gauge is the simplest gauge in which to describe Lagrangian bias at second order.
162 - D. Sluse , M. Tewes 2014
Owing to the advent of large area photometric surveys, the possibility to use broad band photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei, has raised a large interest. We describe here a new method using time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images which is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques which use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.
111 - Peter Schneider 2014
We consider several aspects of the generalized multi-plane gravitational lens theory, in which light rays from a distant source are affected by several main deflectors, and in addition by the tidal gravitational field of the large-scale matter distri bution in the Universe when propagating between the main deflectors. Specifically, we derive a simple expression for the time-delay function in this case, making use of the general formalism for treating light propagation in inhomogeneous spacetimes which leads to the characterization of distance matrices between main lens planes. Applying Fermats principle, an alternative form of the corresponding lens equation is derived, which connects the impact vectors in three consecutive main lens planes, and we show that this form of the lens equation is equivalent to the more standard one. For this, some general relations for cosmological distance matrices are derived. The generalized multi-plane lens situation admits a generalized mass-sheet transformation, which corresponds to uniform isotropic scaling in each lens plane, a corresponding scaling of the deflection angle, and the addition of a tidal matrix (mass sheet plus external shear) to each main lens. We show that the time delay for sources in all lens planes scale with the same factor under this generalized mass-sheet transformation, thus precluding the use of time-delay ratios to break the mass-sheet transformation.
94 - Holger Israel 2014
The mass of galaxy clusters can be inferred from the temperature of their X-ray emitting gas, $T_{mathrm{X}}$. Their masses may be underestimated if it is assumed that the gas is in hydrostatic equilibrium, by an amount $b^{mathrm{hyd}}sim(20pm10)$ % suggested by simulations. We have previously found consistency between a sample of observed textit{Chandra} X-ray masses and independent weak lensing measurements. Unfortunately, uncertainties in the instrumental calibration of {em Chandra} and {em XMM-Newton} observatories mean that they measure different temperatures for the same gas. In this paper, we translate that relative instrumental bias into mass bias, and infer that textit{XMM-Newton} masses of $sim 10^{14},mbox{M}_{odot}$ ($> 5cdot 10^{14} mbox{M}_{odot}$) clusters are unbiased ($sim 35$ % lower) compared to WL masses. For massive clusters, textit{Chandra}s calibration may thus be more accurate. The opposite appears to be true at the low mass end. We observe the mass bias to increase with cluster mass, but presence of Eddington bias precludes firm conclusions at this stage. Nevertheless, the systematic textit{Chandra} -- textit{XMM-Newton} difference is important because {em Planck}s detections of massive clusters via the Sunyaev-Zeldovich (SZ) effect are calibrated via {em XMM-Newton} observations. The number of detected SZ clusters are inconsistent with {em Planck}s cosmological measurements of the primary Cosmic Microwave Background (CMB). Given the textit{Planck} cluster masses, if an (unlikely) uncorrected $sim 20$ % calibration bias existed, this tension would be eased, but not resolved.
We have explored prevailing modes of galaxy growth for redshifts z ~ 6-14, comparing substantially overdense and normal regions of the universe, using high-resolution zoom-in cosmological simulations. Such rare overdense regions have been projected t o host high-z quasars. We demonstrate that galaxies in such environments grow predominantly by a smooth accretion from cosmological filaments which dominates the mass input from major, intermediate and minor mergers. We find that by z ~6, the accumulated galaxy mass fraction from mergers falls short by a factor of 10 of the cumulative accretion mass for galaxies in the overdense regions, and by a factor of 5 in the normal environments. Moreover, the rate of the stellar mass input from mergers also lies below that of an in-situ star formation (SF) rate. The fraction of stellar masses in galaxies contributed by mergers in overdense regions is ~12%, and ~33% in the normal regions, at these redshifts. Our median SF rates for ~few X 10^9 Mo galaxies agrees well with the recently estimated rates for z ~ 7 galaxies from Spitzers SURF-UP survey. Finally, we find that the main difference between the normal and overdense regions lies in the amplified growth of massive galaxies in massive dark matter halos. This leads to the formation of >= 10^{10} Mo galaxies due to the ~100-fold increase in mass during the above time period. Such galaxies are basically absent in the normal regions at these redshifts.
121 - Aaron D. Ludlow 2013
We use the Millennium Simulation series to investigate the mass and redshift dependence of the concentration of equilibrium cold dark matter (CDM) halos. We extend earlier work on the relation between halo mass profiles and assembly histories to show how the latter may be used to predict concentrations for halos of all masses and at any redshift. Our results clarify the link between concentration and the ``collapse redshift of a halo as well as why concentration depends on mass and redshift solely through the dimensionless ``peak height mass parameter, $ u(M,z)=delta_{rm crit}(z)/sigma(M,z)$. We combine these results with analytic mass accretion histories to extrapolate the $c(M,z)$ relations to mass regimes difficult to reach through direct simulation. Our model predicts that, at given $z$, $c(M)$ should deviate systematically from a simple power law at high masses, where concentrations approach a constant value, and at low masses, where concentrations are substantially lower than expected from extrapolating published empirical fits. This correction may reduce the expected self-annihilation boost factor from substructure by about one order of magnitude. The model also reproduces the $c(M,z)$ dependence on cosmological parameters reported in earlier work, and thus provides a simple and robust account of the relation between cosmology and the mass-concentration-redshift relation of CDM halos.
30 - Olaf Wucknitz 2013
We report on a recent global VLBI experiment in which we study the scatter broadening of pulsars in the spatial and time domain simultaneously. Depending on the distribution of scattering screen(s), geometry predicts that the less spatially broadened parts of the signal arrive earlier than the more broadened parts. This means that over one pulse period the size of the scattering disk should grow from pointlike to the maximum size. An equivalent description is that the pulse profile shows less temporal broadening on the longer baselines. This contribution presents first results that are consistent with the expected expanding rings. We also briefly discuss how the autocorrelations can be used for amplitude calibration. This requires a thorough investigation of the digitisation and the sampler statistics and is not fully solved yet.
We aim at an unbiased census of the radio halo population in galaxy clusters and test whether current low number counts of radio halos have arisen from selection biases. We construct near-complete samples based on X-ray and Sunyaev-Zeldovich (SZ) eff ect cluster catalogues and search for diffuse, extended (Mpc-scale) emission near the cluster centers by analyzing data from the National Radio Astronomy Observatory Very Large Array Sky Survey. We remove compact sources using a matched filtering algorithm and model the diffuse emission using two independent methods. The relation between radio halo power at 1.4 GHz and mass observables is modelled using a power law, allowing for a dropout population of clusters hosting no radio halo emission. An extensive suite of simulations is used to check for biases in our methods. Our findings suggest that the fraction of targets hosting radio halos may have to be revised upwards for clusters selected using the SZ effect: while approximately 60 per cent of the X-ray selected targets are found to contain no extended radio emission, in agreement with previous findings, the corresponding fraction in the SZ selected samples is roughly 20 per cent. We propose a simple explanation for this selection difference based on the distinct time evolution of the SZ and X-ray observables during cluster mergers, and a bias towards relaxed, cool-core clusters in the X-ray selection.
We use a set of AMR hydrodynamic simulations post-processed with the radiative-transfer code RADAMESH to study how inhomogeneous HeII reionization affects the intergalactic medium (IGM). We propagate radiation from active galactic nuclei (AGNs) consi dering two scenarios for the time evolution of the ionizing sources. We find that HeII reionization takes place in a very inhomogeneous fashion, through the production of well separated bubbles of the ionized phase that subsequently percolate. Overall, the reionization process is extended in time and lasts for a redshift interval Delta z>1. At fixed gas density, the temperature distribution is bimodal during the early phases of HeII reionization and cannot be described by a simple effective equation of state. When HeII reionization is complete, the IGM is characterized by a polytropic equation of state with index gamma~1.20. This relation is appreciably flatter than at the onset of the reionization process (gamma=1.56) and also presents a much wider dispersion around the mean. We extract HI and HeII Ly-alpha absorption spectra from the simulations and fit Voigt profiles to them. We find that the regions where helium is doubly ionized are characterized by different probability density functions of the curvature and of the Doppler b parameters of the HI Ly-alpha forest as a consequence of the bimodal temperature distribution during the early phases of HeII reionization. The column-density ratio in HeII and HI shows a strong spatial variability. Its probability density function rapidly evolves with time reflecting the increasing volume fraction in which ionizing radiation is harder due to the AGN contribution. Finally we show that the number density of the flux-transmission windows per unit redshift and the mean size of the dark gaps in the HeII spectra have the potential to distinguish between different reionization scenarios. (abridged)
We introduce a new method to measure the dispersion of mmax values of star clusters and show that the observed sample of mmax is inconsistent with random sampling from an universal stellar initial mass function (IMF) at a 99.9% confidence level. The scatter seen in the mmax-Mecl data can be mainly (76%) understood as being the result of observational uncertainties only. The scatter of mmax values at a given Mecl are consistent with mostly measurement uncertainties such that the true (physical) scatter may be very small. Additionally, new data on the local star-formation regions Taurus-Auriga and L1641 in Orion make stochastically formed stellar populations rather unlikely. The data are however consistent with the local IGIMF (integrated galactic stellar initial mass function) theory according to which a stellar population is a sum of individual star-forming events each of which is described by well defined physical laws. Randomly sampled IMFs and henceforth scale-free star formation seems to be in contradiction to observed reality.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا