ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a complete analysis of the imprint of tensor anisotropies on the Cosmic Microwave Background for a class of f(R) gravity theories within the PPF-CAMB framework. We derive the equations, both for the cosmological background and gravitationa l wave perturbations, required to obtain the standard temperature and polarization power spectra, taking care to include all effects which arise from f(R) modifications of both the background and the perturbation equations. For R^n gravity, we show that for n different from 2, the initial conditions in the radiation dominated era are the same as those found in General Relativity. We also find that by doing simulations which involve either modifying the background evolution while keeping the perturbation equations fixed or fixing the background to be the Lambda-CDM model and modifying the perturbation equations, the dominant contribution to deviations from General Relativity in the temperature and polarization spectra can be attributed to modifications in the background. This demonstrates the importance of using the correct background in perturbative studies of f(R) gravity. Finally an enhancement in the B-modes power spectra is observed which may allow for lower inflationary energy scales.
107 - Prina Patel 2013
We present a study of weak lensing shear measurements for simulated galaxy images at radio wavelengths. We construct a simulation pipeline into which we can input galaxy images of known ellipticity, and with which we then simulate observations with e MERLIN and the international LOFAR array. The simulations include the effects of the CLEAN algorithm, uv sampling, observing angle, and visibility noise, and produce realistic restored images of the galaxies. We apply a shapelet-based shear measurement method to these images and test our ability to recover the true source ellipticities. We model and deconvolve the effective PSF, and find suitable parameters for CLEAN and shapelet decomposition of galaxies. We demonstrate that ellipticities can be measured faithfully in these radio simulations, with no evidence of an additive bias and a modest (10%) multiplicative bias on the ellipticity measurements. Our simulation pipeline can be used to test shear measurement procedures and systematics for the next generation of radio telescopes.
In General Relativity without a cosmological constant a non-positive contribution from the space-time geometry to Raychaudhuri equation is found provided that particular energy conditions are assumed and regardless the considered solution of the Eins teins equations. This fact is usually interpreted as a manifestation of the attractive character of gravity. Nevertheless, a positive contribution to Raychaudhuri equation from space-time geometry should occur since this is the case in an accelerated expanding Robertson-Walker model for congruences followed by fundamental observers. Modified gravity theories provide the possibility of a positive contribution although the standard energy conditions are assumed. We address this important issue in the context of f(R) theories, deriving explicit upper bounds for the contribution of space-time geometry to the Raychaudhuri equation. Then, we examine the parameter constraints for some paradigmatic f(R) models in order to ensure a positive contribution to this equation. Furthermore, we consider the implications of these upper bounds in the equivalent formulation of f(R) theories as a Brans-Dicke model.
79 - F. D. Albareti 2012
We study the accelerated expansion of the Universe through its consequences on a congruence of geodesics. We make use of the Raychaudhuri equation which describes the evolution of the expansion rate for a congruence of timelike or null geodesics. In particular, we focus on the space-time geometry contribution to this equation. By straightforward calculation from the metric of a Robertson-Walker cosmological model, it follows that in an accelerated expanding Universe the space-time contribution to the Raychaudhuri equation is positive for the fundamental congruence, favoring a non-focusing of the congruence of geodesics. However, the accelerated expansion of the present Universe does not imply a tendency of the fundamental congruence to diverge. It is shown that this is in fact the case for certain congruences of timelike geodesics without vorticity. Therefore, the focusing of geodesics remains feasible in an accelerated expanding Universe. Furthermore, a negative contribution to the Raychaudhuri equation from space-time geometry which is usually interpreted as the manifestation of the attractive character of gravity is restored in an accelerated expanding Robertson-Walker space-time at high speeds.
Along this review, we focus on the study of several properties of modified gravity theories, in particular on black-hole solutions and its comparison with those solutions in General Relativity, and on Friedmann-Lemaitre-Robertson-Walker metrics. The thermodynamical properties of fourth order gravity theories are also a subject of this investigation with special attention on local and global stability of paradigmatic f(R) models. In addition, we revise some attempts to extend the Cardy-Verlinde formula, including modified gravity, where a relation between entropy bounds is obtained. Moreover, a deep study on cosmological singularities, which appear as a real possibility for some kind of modified gravity theories, is performed, and the validity of the entropy bounds is studied.
Modified gravity is one of the most promising candidates for explaining the current accelerating expansion of the Universe, and even its unification with the inflationary epoch. Nevertheless, the wide range of models capable to explain the phenomena of dark energy, imposes that current research focuses on a more precise study of the possible effects of modified gravity may have on both cosmological and local levels. In this paper, we focus on the analysis of a type of modified gravity, the so-called f(R,G) gravity and we perform a deep analysis on the stability of important cosmological solutions. This not only can help to constrain the form of the gravitational action, but also facilitate a better understanding of the behavior of the perturbations in this class of higher order theories of gravity, which will lead to a more precise analysis of the full spectrum of cosmological perturbations in future.
HIZOA J0836-43is one of the most HI-massive galaxies in the local (z<0.1) Universe. Not only are such galaxies extremely rare, but this coelacanth galaxy exhibits characteristics -- in particular its active, inside-out stellar disk-building -- that a ppear more typical of past (z ~ 1) star formation, when large gas fractions were more common. Unlike most local giant HI galaxies, it is actively star forming. Moreover, the strong infrared emission is not induced by a merger event or AGN, as is commonly found in other local LIRGs. The galaxy is suggestive of a scaled-up version of local spiral galaxies; its extended star formation activity likely being fueled by its large gas reservoir and, as such, can aid our understanding of star formation in systems expected to dominate at higher redshifts. The multi-wavelength imaging and spectroscopic observations that have led to these deductions will be presented. These include NIR (J H K) and MIR (Spitzer; 3-24micron) imaging and photometry, MIR spectroscopy, ATCA HI-interferometry and Mopra CO line emission observations. But no optical data, as the galaxy is heavily obscured due to its location in Vela behind the Milky Way.
146 - B.W. Holwerda 2011
The MeerKAT (64 x 13.5m dish radio interferometer) is South Africas precursor instrument for the Square Kilometre Array (SKA), exploring dish design, instrumentation, and the characteristics of a Karoo desert site and is projected to be on sky in 201 6. One of two top-priority, Key Projects is a single deep field, integrating for 5000 hours total with the aim to detect neutral atomic hydrogen through its 21 cm line emission out to redshift unity and beyond. This first truly deep HI survey will help constrain fueling models for galaxy assembly and evolution. It will measure the evolution of the cosmic neutral gas density and its distribution over galaxies over cosmic time, explore evolution of the gas in galaxies, measure the Tully-Fisher relation, measure OH maser counts, and address many more topics. Here we present the observing strategy and envisaged science case for this unique deep field, which encompasses the Chandra Deep Field-South (and the footprints of GOODS, GEMS and several other surveys) to produce a singular legacy multi-wavelength data-set.
166 - Mathew Smith 2011
Using data from the Sloan Digital Sky Supernova Survey-II, we measure the rate of Type Ia Supernovae (SNe Ia) as a function of galaxy properties at intermediate redshift. A sample of 342 SNe Ia with 0.05<z<0.25 is constructed. Using broad-band photom etry we use the PEGASE spectral energy distributions (SEDs) to estimate host galaxy stellar masses and recent star-formation rates. We find that the rate of SNe Ia per unit stellar mass is significantly higher (by a factor of ~30) in highly star-forming galaxies compared to passive galaxies. When parameterizing the SN Ia rate (SNR_Ia) based on host galaxy properties, we find that the rate of SNe Ia in passive galaxies is not linearly proportional to the stellar mass, instead a SNR_Ia proportional to M^0.68 is favored. However, such a parameterization does not describe the observed SN Ia rate in star-forming galaxies. The SN Ia rate in star-forming galaxies is well fit by SNR_Ia = 1.05pm0.16x10^{-10} M ^{0.68pm0.01} + 1.01pm0.09x10^{-3} SFR^{1.00pm0.05} (statistical errors only), where M is the host galaxy mass and SFR is the star-formation rate. These results are insensitive to the selection criteria used, redshift limit considered and the inclusion of non-spectroscopically confirmed SNe Ia. We also show there is a dependence between the distribution of the MLCS light-curve decline rate parameter, Delta, and host galaxy type. Passive galaxies host less luminous SNe Ia than seen in moderately and highly star-forming galaxies, although a population of luminous SNe is observed in passive galaxies, contradicting previous assertions that these SNe Ia are only observed in younger stellar systems. The MLCS extinction parameter, A_V, is similar in passive and moderately star-forming galaxies, but we find indications that it is smaller, on average, in highly star-forming galaxies. We confirm these results using the SALT2 light-curve fitter.
The calculation of the averaged Hubble expansion rate in an averaged perturbed Friedmann-Lemaitre-Robertson-Walker cosmology leads to small corrections to the background value of the expansion rate, which could be important for measuring the Hubble c onstant from local observations. It also predicts an intrinsic variance associated with the finite scale of any measurement of H_0, the Hubble rate today. Both the mean Hubble rate and its variance depend on both the definition of the Hubble rate and the spatial surface on which the average is performed. We quantitatively study different definitions of the averaged Hubble rate encountered in the literature by consistently calculating the backreaction effect at second order in perturbation theory, and compare the results. We employ for the first time a recently developed gauge-invariant definition of an averaged scalar. We also discuss the variance of the Hubble rate for the different definitions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا