ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the synthesis and characterization of Li2ZnV3O8, which is a new Zn-doped LiV2O4 system containing only tetravalent vanadium. A Curie-Weiss susceptibility with a Curie-Weiss temperature of <theta>CW ~214 K suggests the presence of strong ant iferromagnetic correlations in this system. We have observed a splitting between the zero-field cooled ZFC and field cooled FC susceptibility curves below 6 K. A peak is present in the ZFC curve around 3.5 K suggestive of spin-freezing . Similarly, a broad hump is also seen in the inferred magnetic heat capacity around 9 K. The consequent entropy change is only about 8% of the value expected for an ordered S = 1=2 system. This reduction indicates continued presence of large disorder in the system in spite of the large <theta>CW, which might result from strong geometric frustration in the system. We did not find any temperature T dependence in our 7Li nuclear magnetic resonance NMR shift down to 6 K (an abrupt change in the shift takes place below 6 K) though considerable T-dependence has been found in literature for LiV2O4- undoped or with other Zn/Ti contents. Consistent with the above observation, the 7Li nuclear spin-lattice relaxation rate 1/T1 is relatively small and nearly T-independent except a small increase close to the freezing temperature, once again, small compared to undoped or 10% Zn or 20% Ti-doped LiV2O4.
We have carried out detailed bulk and local probe studies on the hexagonal oxides Ba3MIr2O9 (M=Sc,Y) where Ir is expected to have a fractional oxidation state of +4.5. In the structure, Ir-Ir dimers are arranged in an edge shared triangular network p arallel to the ab plane. Whereas only weak anomalies are evident in the susceptibility data, clearer anomalies are present in the heat capacity data. Our 45Sc nuclear magnetic resonance (NMR) lineshape (first order quadrupole split) is symmetric at room temperature but becomes progressively asymmetric with decreasing temperatures. This is suggestive of distortions in the structure which could arise from progressive tilt/rotation of the IrO6 octahedra with a decrease in temperature T. The 45Sc NMR spectral weight shifts near the reference frequency with decreasing T indicating the development of magnetic singlet regions. Around 10K, a significant change in the spectrum takes place with a large intensity appearing near the reference frequency but with the spectrum remaining multi-peak. It appears from our 45Sc NMR data that in Ba3ScIr2O9 significant disorder is still present below 10K. In the case of Ba3YIr2O9, the 89Y NMR spectral lines are asymmetric at high temperatures but become nearly symmetric (single magnetic environment) below T~70K. Our 89Y spectra and T1 measurements confirm the onset of long range ordering (LRO) from a bulk of the sample at 4K in this compound. Our results suggest that Ba3YIr2O9 might be structurally distorted at room temperature (via, for example, tilt/rotations of the IrO6 octahedra) but becomes progressively a regular triangular lattice with decreasing T. The effective magnetic moments and magnetic entropy changes are strongly reduced in Ba3YIr2O9 as compared to those expected for a S=1/2 system. Similar effects have been found in other iridates which naturally have strong spin-orbit coupling (SOC).
We report the structural transformation of hexagonal Ba3YIr2O9 to a cubic double perovskite form (stable in ambient conditions) under an applied pressure of 8GPa at 1273K. While the ambient pressure (AP) synthesized sample undergoes long-range magnet ic ordering at 4K, the high pressure(HP) synthesized sample does not order down to 2K as evidenced from our susceptibility, heat capacity and nuclear magnetic resonance (NMR) measurements. Further, for the HP sample, our heat capacity data have the form gamma*T+beta*T3 in the temperature (T) range of 2-10K with the Sommerfeld coefficient gamma=10mJ/mol-Ir K2. The 89Y NMR shift has no T-dependence in the range of 4-120K and its spin-lattice relaxation rate varies linearly with T in the range of 8-45K (above which it is T-independent). Resistance measurements of both the samples confirm that they are semiconducting. Our data provide evidence for the formation of a 5d based, gapless, quantum spin-liquid (QSL) in the cubic (HP) phase of Ba3YIr2O9. In this picture, the T term in the heat capacity and the linear variation of 89Y 1/T1 arises from excitations out of a spinon Fermi surface. Our findings lend credence to the theoretical suggestion [G. Chen, R. Pereira, and L. Balents, Phys. Rev. B 82, 174440 (2010)] that strong spin-orbit coupling can enhance quantum fluctuations and lead to a QSL state in the double perovskite lattice.
Ba3IrTi2O9 crystallizes in a hexagonal structure consisting of a layered triangular arrangement of Ir4+ (Jeff=1/2). Magnetic susceptibility and heat capacity data show no magnetic ordering down to 0.35K inspite of a strong magnetic coupling as eviden ced by a large Curie-Weiss temperature=-130K. The magnetic heat capacity follows a power law at low temperature. Our measurements suggest that Ba3IrTi2O9 is a 5d, Ir-based (Jeff=1/2), quantum spin liquid on a 2D triangular lattice.
119Sn nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rate (1/T1) in SnO2 nanoparticles were measured as a function of temperature and compared with those of SnO2 bulk sample. A 15% loss of 119Sn NMR signal intensity for the nano sample compared to the bulk sample was observed. This is indicative of ferromagnetism from a small fraction of the sample. Another major finding is that the recovery of the 119Sn longitudinal nuclear magnetization in the nano sample follows a stretched exponential behavior, as opposed to that in bulk which is exponential. Further, the 119Sn 1/T1 at room temperature is found to be much higher for the nano sample than for its bulk counterpart. These results indicate the presence of magnetic fluctuations in SnO2 nanoparticles in contrast to the bulk (non-nano) which is diamagnetic. These local moments could arise from surface defects in the nanoparticles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا