ترغب بنشر مسار تعليمي؟ اضغط هنا

System of two-fluid hydrodynamics of superfluid helium with the account of electric field is obtained. These equations are obtained in kinetic approach using quasi-equilibrium distribution function of quasi-particles, which vanishs collision integral of quasi-particles, and contains dependence on electric field by means of phenomenological parameter {alpha}. Using experimental data at temperature range of 1,4 - 2 K, where basic role plays roton hydrodynamics, the value of phenomenological parameter, is obtained.
Based on interrelation between the thermodynamic and electromechanical phenomena in superfluid helium, the explanation of experimentally found features of microwave interaction in the frequency range of 40-200 GHz is given. Due to fast roton-roton an d roton-phonon interactions resonant excitation on frequency correspond to minimal roton energy relaxes and forms a wide pedestal. Alongside these fast processes, there are also slower processes of rotons scattering by microwave photons taking place, which lead to additional absorption of energy of resonant microwaves and to the appearance of a narrow resonant peak on the background of a wide pedestal. The theoretical explanation of the influence which streams exert on resonant absorption of microwaves is given. The critical velocity of stream at which absorption of microwaves was replaced by their radiation is found.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا