ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a minimal nonlinearly realized electroweak theory where mass generation happens `a la Stueckelberg. Deformation of the nonlinearly realized gauge symmetry is controlled by functional methods. The Weak Power Counting allows to select uniqu ely the Hopf algebra of the theory and gives definite predictions on the Beyond-the-Standard Model (BSM) sector of the theory: the latter includes one CP-odd and two charged physical scalars (in addition to the Higgs-like CP-even resonance). The model interpolates between a purely Stueckelberg and a Higgs scenario. It can be used in order to check whether the presence of a Stueckelberg mass component can already be excluded on the basis of the existing LHC7-8 data.
We show that it is possible to accommodate physical scalar resonances within a minimal nonlinearly realized electroweak theory in a way compatible with a natural Hopf algebra selection criterion (Weak Power Counting) and the relevant functional ident ities of the model (Local Functional Equation, Slavnov-Taylor identity, ghost equations, b-equations). The Beyond-the-Standard-Model (BSM) sector of the theory is studied by BRST techniques. The presence of a mass generation mechanism `a la Stuckelberg allows for two mass invariants in the gauge boson sector. The corresponding t Hooft gauge-fixing is constructed by respecting all the symmetries of the theory. The model interpolates between the Higgs and a purely Stuckelberg scenario. Despite the presence of physical scalar resonances, we show that tree-level violation of unitarity in the scattering of longitudinally polarized charged gauge bosons occurs at sufficiently high energies, if a fraction of the mass is generated by the Stuckelberg mechanism. The formal properties of the physically favoured limit after LHC7-8 data, where BSM effects are small and custodial symmetry in the gauge boson sector is respected, are studied.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا