ﻻ يوجد ملخص باللغة العربية
We show that it is possible to accommodate physical scalar resonances within a minimal nonlinearly realized electroweak theory in a way compatible with a natural Hopf algebra selection criterion (Weak Power Counting) and the relevant functional identities of the model (Local Functional Equation, Slavnov-Taylor identity, ghost equations, b-equations). The Beyond-the-Standard-Model (BSM) sector of the theory is studied by BRST techniques. The presence of a mass generation mechanism `a la Stuckelberg allows for two mass invariants in the gauge boson sector. The corresponding t Hooft gauge-fixing is constructed by respecting all the symmetries of the theory. The model interpolates between the Higgs and a purely Stuckelberg scenario. Despite the presence of physical scalar resonances, we show that tree-level violation of unitarity in the scattering of longitudinally polarized charged gauge bosons occurs at sufficiently high energies, if a fraction of the mass is generated by the Stuckelberg mechanism. The formal properties of the physically favoured limit after LHC7-8 data, where BSM effects are small and custodial symmetry in the gauge boson sector is respected, are studied.
We make a careful re-examination of the possibility that, in a U(1) extension of the Standard Model, the extra Z boson may acquire a mass from a Stueckelberg-type scalar. The model, when all issues of theoretical consistency are taken into account, c
The EDGES experiment shows a cooling of baryons at a redshift of $zsim 17$ with an amplitude of 500$_{-500}^{+200}$ mK at 99% C.L. which is a 3.8$sigma$ deviation from what the standard $Lambda$CDM cosmology gives. We present a particle physics model
We study the Schwinger mechanism in QCD in the presence of an arbitrary time-dependent chromo-electric background field $E^a(t)$ with arbitrary color index $a$=1,2,...8 in SU(3). We obtain an exact result for the non-perturbative quark (antiquark) pr
The hierarchy problem in the Standard Model is usually understood as both a technical problem of stability of the calculation of the quantum corrections to the masses of the Higgs sector and of the unnatural difference between the Planck and gauge br
We investigate a $U(1)_{B-L}$ gauge extension of the Standard Model (SM) where the gauge boson mass is generated by the Stueckelberg mechanism. Three right-handed neutrinos are added to cancel the gauge anomaly and hence the neutrino masses can be ex