ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an analysis of the molecular and atomic gas emission in the rest-frame far-infrared and sub-millimetre, from the lensed z=2.3 sub-millimetre galaxy SMM J2135-0102. We obtain very high signal-to-noise detections of 11 transitions from 3 spe cies and limits on a further 20 transitions from 9 species. We use the 12CO, [CI] and HCN line strengths to investigate the gas mass, kinematic structure and interstellar medium (ISM) chemistry, and find strong evidence for a two-phase medium comprising a hot, dense, luminous component and an underlying extended cool, low-excitation massive component. Employing photo-dissociation region models we show that on average the molecular gas is exposed to a UV radiation field that is ~1000 x more intense than the Milky Way, with star-forming regions having a characteristic density of n~10^4 /cm^3. These conditions are similar to those found in local ULIRGs and in the central regions of typical starburst galaxies, even though the star formation rate is far higher in this system. The 12CO spectral line energy distribution and line profiles give strong evidence that the system comprises multiple kinematic components with different conditions, including temperature, and line ratios suggestive of high cosmic ray flux within clouds. We show that, when integrated over the galaxy, the gas and star-formation surface densities appear to follow the Kennicutt-Schmidt relation, although when compared to high-resolution sub-mm imaging, our data suggest that this relation breaks down on scales of <100pc. By virtue of the lens amplification, these observations uncover a wealth of information on the star formation and ISM at z~2.3 at a level of detail that has only recently become possible at z<0.1, and show the potential physical properties that will be studied in unlensed galaxies when ALMA is in full operation. (Abridged).
Leading models of galaxy formation require large-scale energetic outflows to regulate the growth of distant galaxies and their central black holes. However, current observational support for this hypothesis at high redshift is mostly limited to rare z>2 radio galaxies. Here we present Gemini-North NIFS Intregral Field Unit (IFU) observations of the [O III]5007 emission from a z~2 ultraluminous infrared galaxy (ULIRG; L_IR>10^12 L_sol) with an optically identified Active Galactic Nucleus (AGN). The spatial extent (~4-8 kpc) of the high velocity and broad [O III] emission are consistent with that found in z>2 radio galaxies, indicating the presence of a large-scale energetic outflow in a galaxy population potentially orders of magnitude more common than distant radio galaxies. The low radio luminosity of this system indicates that radio-bright jets are unlikely to be responsible for driving the outflow. However, the estimated energy input required to produce the large-scale outflow signatures (of order ~10^59 ergs over ~30 Myrs) could be delivered by a wind radiatively driven by the AGN and/or supernovae winds from intense star formation. The energy injection required to drive the outflow is comparable to the estimated binding energy of the galaxy spheroid, suggesting that it can have a significant impact on the evolution of the galaxy. We argue that the outflow observed in this system is likely to be comparatively typical of the high-redshift ULIRG population and discuss the implications of these observations for galaxy formation models.
Leading models of galaxy formation require large-scale energetic outflows to regulate the growth of distant galaxies and their central black holes. However, current observational support for this hypothesis at high redshift is mostly limited to rare z>2 radio galaxies. Here we present Gemini-North NIFS Intregral Field Unit (IFU) observations of the [OIII] emission from a z~2 ultraluminous infrared galaxy (L_IR>10^12 solar luminosities) with an optically identified Active Galactic Nucleus (AGN). The spatial extent (~4-8 kpc) of the high velocity and broad [OIII] emission are consistent with that found in z>2 radio galaxies, indicating the presence of a large-scale energetic outflow in a galaxy population potentially orders of magnitude more common than distant radio galaxies. The low radio luminosity of this system indicates that radio-bright jets are unlikely to be responsible for driving the outflow. However, the estimated energy input required to produce the large-scale outflow signatures (of order ~10^59 ergs over ~30 Myrs) could be delivered by a wind radiatively driven by the AGN and/or supernovae winds from intense star formation. The energy injection required to drive the outflow is comparable to the estimated binding energy of the galaxy spheroid, suggesting that it can have a significant impact on the evolution of the galaxy. We argue that the outflow observed in this system is likely to be comparatively typical of the high-redshift ULIRG population and discuss the implications of these observations for galaxy formation models.
53 - Ian Smail 2008
We have undertaken a pilot survey for faint QSOs in the UKIDSS Ultra Deep Survey Field using the KX selection technique. These observations exploit the very deep near-infrared and optical imaging of this field from UKIRT and Subaru to select candidat e QSOs based on their VJK colours and morphologies. We determined redshifts for 426 candidates using the AAOmega spectrograph on the AAT in service time. We identify 17 QSOs (M_B<= -23) in this pilot survey at z=1.57-3.29. We combine our sample with an X-ray selected sample of QSOs in the same field (a large fraction of which also comply with our KX selection) to constrain the surface density of QSOs with K<=20, deriving limits on the likely surface density of 85-150/deg^2. We use the good image quality available from our near-infrared imaging to detect a spatially extended component of the QSO light which probably represents the host galaxies. We also use our sample to investigate routes to improve the selection of KX QSOs at faint limits in the face of the significant contamination by compact, foreground galaxies. The brightest examples from our combined QSO sample will be used in conjunction with a large VLT VIMOS spectroscopic survey of high redshift galaxies in this region to study the structures inhabited by gas, galaxies and growing super-massive black holes at high redshifts in the UKIDSS UDS.
84 - A.M. Swinbank 2007
We analyse the first publicly released deep field of the UKIDSS Deep eXtragalactic Survey (DXS) to identify candidate galaxy over-densities at z~1 across ~1 sq. degree in the ELAIS-N1 field. Using I-K, J-K and K-3.6um colours we identify and spectros copically follow-up five candidate structures with Gemini/GMOS and confirm they are all true over-densities with between five and nineteen members each. Surprisingly, all five structures lie in a narrow redshift range at z=0.89+/-0.01, although they are spread across 30Mpc on the sky. We also find a more distant over-density at z=1.09 in one of the spectroscopic survey regions. These five over-dense regions lying in a narrow redshift range indicate the presence of a supercluster in this field and by comparing with mock cluster catalogs from N-body simulations we discuss the likely properties of this structure. Overall, we show that the properties of this supercluster are similar to the well-studied Shapley and Hercules superclusters at lower redshift.
81 - K.E.K. Coppin 2007
We report the detection of CO(3-2) emission from a bright, gravitationally lensed Lyman Break Galaxy, LBGJ213512.73-010143 (the Cosmic Eye), at z=3.07 using the Plateau de Bure Interferometer. This is only the second detection of molecular gas emissi on from an LBG and yields an intrinsic molecular gas mass of (2.4+/-0.4)x10^9 Mo. The lens reconstruction of the UV morphology of the LBG indicates that it comprises two components separated by ~2 kpc. The CO emission is unresolved, and appears to be centered on the intrinsically fainter (and also less highly magnified) of the two UV components. The width of the CO line indicates a dynamical mass of (8+/-2)x10^9csc(i)^2 Mo within the central 2 kpc. Employing mid-infrared observations from Spitzer we derive a stellar mass of ~(6+/-2)x10^9 Mo and a star-formation rate of ~60 Mo/yr, indicating that the molecular gas will be consumed in ~40 Myr. The gas fractions, star-formation efficiencies and line widths suggests that LBGJ213512 is a high-redshift, gas-rich analog of a local luminous infrared galaxy. This galaxy has a similar gas-to-dynamical mass fraction as observed in the submillimeter-selected population, although the gas surface density and star-formation efficiency is a factor of 3x less, suggesting less vigorous activity. We discuss the uncertainties in our conclusions arising from adopting a CO-to-H2 conversion factor appropriate for either the Milky Way or local luminous infrared galaxies. These observations demonstrate that current facilities, when aided by fortuitous gravitational magnification, can study ordinary galaxies at high-redshift and so act as pathfinders for ALMA.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا