ترغب بنشر مسار تعليمي؟ اضغط هنا

The discovery of a massive supercluster at z=0.9 in the UKIDSS DXS

133   0   0.0 ( 0 )
 نشر من قبل Mark Swinbank Dr.
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.M. Swinbank




اسأل ChatGPT حول البحث

We analyse the first publicly released deep field of the UKIDSS Deep eXtragalactic Survey (DXS) to identify candidate galaxy over-densities at z~1 across ~1 sq. degree in the ELAIS-N1 field. Using I-K, J-K and K-3.6um colours we identify and spectroscopically follow-up five candidate structures with Gemini/GMOS and confirm they are all true over-densities with between five and nineteen members each. Surprisingly, all five structures lie in a narrow redshift range at z=0.89+/-0.01, although they are spread across 30Mpc on the sky. We also find a more distant over-density at z=1.09 in one of the spectroscopic survey regions. These five over-dense regions lying in a narrow redshift range indicate the presence of a supercluster in this field and by comparing with mock cluster catalogs from N-body simulations we discuss the likely properties of this structure. Overall, we show that the properties of this supercluster are similar to the well-studied Shapley and Hercules superclusters at lower redshift.



قيم البحث

اقرأ أيضاً

The Cl1604 supercluster at z=0.9 is one of a small handful of such structures discovered in the high redshift universe, and is the first target observed as part of the Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey. To date, Cl1604 is the largest structure mapped at z~1, with the most constituent clusters and the largest number of spectroscopically confirmed member galaxies. In this paper we present the results of a spectroscopic campaign to create a three-dimensional map of Cl1604 and to understand the contamination by fore- and background large scale structures. Combining new Deep Imaging Multi-object Spectrograph observations with previous data yields redshifts for 1,383 extragalactic objects in a ~ 0.08 sq. deg region, 449 of which are supercluster members. We examine the complex three dimensional structure of Cl1604, providing velocity dispersions for eight of the member clusters and groups. Our extensive spectroscopic dataset is used to examine potential biases in cluster velocity dispersion measurements in the presence of overlapping structures and filaments. We also discuss other structures found along the line-of-sight, including a filament at z=0.6 and two serendipitously discovered clusters/groups at z~1.2.
The RCS 2319+00 supercluster is a massive supercluster at z=0.9 comprising three optically selected, spectroscopically confirmed clusters separated by <3 Mpc on the plane of the sky. This supercluster is one of a few known examples of the progenitors of present-day massive clusters (10^{15} Msun by z~0.5). We present an extensive spectroscopic campaign carried out on the supercluster field resulting, in conjunction with previously published data, in 1961 high confidence galaxy redshifts. We find 302 structure members spanning three distinct redshift walls separated from one another by ~65 Mpc. The component clusters have spectroscopic redshifts of 0.901, 0.905 and 0.905. The velocity dispersions are consistent with those predicted from X-ray data, giving estimated cluster masses of ~10^{14.5} - 10^{14.9} Msun. The Dressler-Shectman test finds evidence of substructure in the supercluster field and a friends-of-friends analysis identified 5 groups in the supercluster, including a filamentary structure stretching between two cluster cores previously identified in the infrared by Coppin et al. (2012). The galaxy colors further show this filamentary structure to be a unique region of activity within the supercluster, comprised mainly of blue galaxies compared to the ~43-77% red-sequence galaxies present in the other groups and cluster cores. Richness estimates from stacked luminosity function fits results in average group mass estimates consistent with ~10^{13} Msun halos. Currently, 22% of our confirmed members reside in >~10^{13} Msun groups/clusters destined to merge onto the most massive cluster, in agreement with the massive halo galaxy fractions important in cluster galaxy pre-processing in N-body simulation merger tree studies.
We report the discovery of a compact supercluster structure at z=0.9. The structure comprises three optically-selected clusters, all of which are detected in X-rays and spectroscopically confirmed to lie at the same redshift. The Chandra X-ray temper atures imply individual masses of ~5x10^14 Msun. The X-ray masses are consistent with those inferred from optical--X-ray scaling relations established at lower redshift. A strongly-lensed z~4 Lyman break galaxy behind one of the clusters allows a strong-lensing mass to be estimated for this cluster, which is in good agreement with the X-ray measurement. Optical spectroscopy of this cluster gives a dynamical mass in good agreement with the other independent mass estimates. The three components of the RCS2319+00 supercluster are separated from their nearest neighbor by a mere <3 Mpc in the plane of the sky and likely <10 Mpc along the line-of-sight, and we interpret this structure as the high-redshift antecedent of massive (~10^15 Msun) z~0.5 clusters such as MS0451.5-0305.
We report a promising candidate for a distant supercluster at z $sim 1.1$ in the Dark Energy Survey Science Verification data. We examine smoothed semi-3D galaxy density maps in various photo-z slices. Among several overdense regions, in this work we report the most significant one as having a $3sigma$ overdensity at a redshift of $sim1.1$, over a $sim160$ Mpc scale, much larger than the regular cluster scale (several Mpc). The shape of the supercluster is not circular in the sky projection. Therefore, we regard the point of maximum overdensity as the center for quantitative measurements. Two different estimates suggest the mass of the supercluster to be $1.37substack{+1.31 -0.79} times 10^{17} M_{odot}$, more than one order more massive than regular galaxy clusters. Except for protosuperclusters found with emission-line galaxies, this could be the most distant supercluster to date defined by regular galaxies. A spectroscopic confirmation would make this a very interesting object for cosmology. We discuss the possible implications of such a massive structure for $Lambda$CDM cosmology.
We present the large-scale structure over more than 50 comoving Mpc scale at z $sim$ 0.9 where the CL1604 supercluster, which is one of the largest structures ever known at high redshifts, is embedded. The wide-field deep imaging survey by the Subaru Strategic Program with Hyper Suprime-Cam reveals that the already-known CL1604 supercluster is a mere part of larger-scale structure extending to both the north and the south. We confirm that there are galaxy clusters at three slightly different redshifts in the northern and southern sides of the supercluster by determining the redshifts of 55 red-sequence galaxies and 82 star-forming galaxies in total by the follow-up spectroscopy with Subaru/FOCAS and Gemini-N/GMOS. This suggests that the structure ever known as the CL1604 supercluster is the tip of the iceberg. We investigate stellar population of the red-sequence galaxies using 4000 A break and Balmer H$delta$ absorption line. Almost all of the red-sequence galaxies brighter than 21.5 mag in $z$-band show an old stellar population with $gtrsim2$ Gyr. The comparison of composite spectra of the red-sequence galaxies in the individual clusters show that the galaxies at a similar redshift have similar stellar population age, even if they are located $sim$50 Mpc apart from each other. However, there could be a large variation in the star formation history. Therefore, it is likely that galaxies associated with the large-scale structure at 50 Mpc scale formed at almost the same time, have assembled into the denser regions, and then have evolved with different star formation history along the hierarchical growth of the cosmic web.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا