ﻻ يوجد ملخص باللغة العربية
We analyse the first publicly released deep field of the UKIDSS Deep eXtragalactic Survey (DXS) to identify candidate galaxy over-densities at z~1 across ~1 sq. degree in the ELAIS-N1 field. Using I-K, J-K and K-3.6um colours we identify and spectroscopically follow-up five candidate structures with Gemini/GMOS and confirm they are all true over-densities with between five and nineteen members each. Surprisingly, all five structures lie in a narrow redshift range at z=0.89+/-0.01, although they are spread across 30Mpc on the sky. We also find a more distant over-density at z=1.09 in one of the spectroscopic survey regions. These five over-dense regions lying in a narrow redshift range indicate the presence of a supercluster in this field and by comparing with mock cluster catalogs from N-body simulations we discuss the likely properties of this structure. Overall, we show that the properties of this supercluster are similar to the well-studied Shapley and Hercules superclusters at lower redshift.
The Cl1604 supercluster at z=0.9 is one of a small handful of such structures discovered in the high redshift universe, and is the first target observed as part of the Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey. To
The RCS 2319+00 supercluster is a massive supercluster at z=0.9 comprising three optically selected, spectroscopically confirmed clusters separated by <3 Mpc on the plane of the sky. This supercluster is one of a few known examples of the progenitors
We report the discovery of a compact supercluster structure at z=0.9. The structure comprises three optically-selected clusters, all of which are detected in X-rays and spectroscopically confirmed to lie at the same redshift. The Chandra X-ray temper
We report a promising candidate for a distant supercluster at z $sim 1.1$ in the Dark Energy Survey Science Verification data. We examine smoothed semi-3D galaxy density maps in various photo-z slices. Among several overdense regions, in this work we
We present the large-scale structure over more than 50 comoving Mpc scale at z $sim$ 0.9 where the CL1604 supercluster, which is one of the largest structures ever known at high redshifts, is embedded. The wide-field deep imaging survey by the Subaru