ترغب بنشر مسار تعليمي؟ اضغط هنا

The behavior of antiferromagnetic domain wall (ADW) against the background of a periodic ferroelectric domain structure has been investigated. It has been shown that the structure and the energy of ADW change due to the interaction with a ferroelectr ic domain structure. The ferroelectric domain boundaries play the role of pins for magnetic spins, the spin density changes in the vicinity of ferroelectric walls. The ADW energy becomes a periodical function on a coordinate which is the position of ADW relative to the ferroelectric domain structure. It has been shown that the energy of the magnetic domain wall attains minimum values when the center of the ADW coincides with the ferroelectric wall and the periodic ferroelectric structure creates periodic coercitivity for the ADW. The neighbouring equilibrium states of the ADW are separated by a finite potential barrier.
Crystals of solid solutions Bi(1-x)R(x)FeO(3),here R= La, Dy, Gd, were obtained with x <=0.7. Solid solutions of the stated rare earths, as x is increased from 0 to 0.7, have one and the same sequence of five crystal structures (rhombohedral C3v 6, t riclinic C1 1,orthorhombic D2 6,orthorhombic D2 5, orthorhombic C2v 9). The ferroelectric-paraelectric transition occurs in rhombohedral and triclinic crystals at T=810-560{deg}C.The high temperature modifications are orthorhombic and cubic. The orthorhombic structure C2v 9 holds up to 1180{deg}C.The ferroelectric domain structure was distinguished in all types of crystals. No magnetoelectric effect (MEE) was detected in the orthorhombic crystals with the D2 (222) symmetry class. But the mm2 crystals were found to have both quadratic and linear MEE.The value of the quadratic effect is considerably smaller than that ofthe linear one. Magnetoelectric hysteresis takes place in the crystals. The tensorial properties of the obtained crystals are analyzed from the viewpoint of crystal symmetry.
The correlation between antiferromagnetic and ferroelectric domain structures in multiferroics has been studied. The role of magnetoelectric interactions in a formation of antiferromagnetic domain structure has been analysed. It has been shown the ma jor physical mechanism binding antiferromagnetic domains to ferroelectrics ones is inhomogeneous flexomagnetoelectric interaction of the Pz((lgrad)lz-lz(divl)) type. The dependences illustrating rearrangement of antiferromagnetic domain pattern together with change of ferroelectric domains thickness has been performed.
There is a profound analogy between inhomogeneous magnetoelectric effect in multiferroics and flexoelectric effect in liquid crystals. This similarity gives rise to the flexomagnetoelectric polarization induced by spin modulation. The theoretical est imations of flexomagnetoelectric polarization agree with the value of jumps of polarization in magnetoelectric dependences (~20muC/m^2) observed at spin cycloid suppression at critical magnetic field 200kOe.
The experimental studies of magnetoelectric effects in pulse magnetic field up to 250 kOe and their theoretical analysis on the basis of magnetic symmetry consideration are carried out. It is shown that the nonvanishing components of quadratic magnet oelectric effect tensor corresponding to the electric polarization along b- and c-axes point out the triclinic distortion of the crystal symmetry. Anomalous temperature dependence of magnetically induced polarization Pa(Hb) testifies to the magnetically induced pyroelectric effect. The torque curves measurements show the deflection of the spin orientation from the b-axis at 9 degrees of arc.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا