ترغب بنشر مسار تعليمي؟ اضغط هنا

We have measured a strong increase of the low-temperature resistivity $rho_{xx}$ and a zero-value plateau in the Hall conductivity $sigma_{xy}$ at the charge neutrality point in graphene subjected to high magnetic fields up to 30 T. We explain our re sults by a simple model involving a field dependent splitting of the lowest Landau level of the order of a few Kelvin, as extracted from activated transport measurements. The model reproduces both the increase in $rho_{xx}$ and the anomalous $ u=0$ plateau in $sigma_{xy}$ in terms of coexisting electrons and holes in the same spin-split zero-energy Landau level.
We present low-temperature and high-field magnetotransport data on SrTiO3-LaAlO3 interfaces. The resistance shows hysteresis in magnetic field and a logarithmic relaxation as a function of time. Oscillations in the magnetoresistance are observed, sho wing a square root periodicity in the applied magnetic field, both in large-area unstructured samples as well as in a structured sample. An explanation in terms of a commensurability condition of edge states in a highly mobile two-dimensional electron gas between substrate step edges is suggested.
We use an atomic force microscope (AFM) to manipulate graphene films on a nanoscopic length scale. By means of local anodic oxidation with an AFM we are able to structure isolating trenches into single-layer and few-layer graphene flakes, opening the possibility of tabletop graphene based device fabrication. Trench sizes of less than 30 nm in width are attainable with this technique. Besides oxidation we also show the influence of mechanical peeling and scratching with an AFM of few layer graphene sheets placed on different substrates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا