ﻻ يوجد ملخص باللغة العربية
We present low-temperature and high-field magnetotransport data on SrTiO3-LaAlO3 interfaces. The resistance shows hysteresis in magnetic field and a logarithmic relaxation as a function of time. Oscillations in the magnetoresistance are observed, showing a square root periodicity in the applied magnetic field, both in large-area unstructured samples as well as in a structured sample. An explanation in terms of a commensurability condition of edge states in a highly mobile two-dimensional electron gas between substrate step edges is suggested.
Interplay of spin, charge, orbital and lattice degrees of freedom in oxide heterostructures results in a plethora of fascinating properties, which can be exploited in new generations of electronic devices with enhanced functionalities. The paradigm e
The interface between the two band insulators SrTiO3 and LaAlO3 unexpectedly has the properties of a two dimensional electron gas. It is even superconducting with a transition temperature, Tc, that can be tuned using gate bias Vg, which controls the
The thermoelectric power of the two-dimensional electron system (2DES) at the LaAlO3/SrTiO3 interface is explored below room temperature, in comparison with that of Nb-doped SrTiO3 single crystals. For the interface we find a region below T =50 K whe
A superconducting phase with an extremely low carrier density of the order of 10^13 cm^-2 is present at LaAlO3-SrTiO3 interfaces. If depleted from charge carriers by means of a gate field, this superconducting phase undergoes a transition into a meta
We report transport measurements, including: Hall, Seebeck and Nernst Effect. All these transport properties exhibit anomalous field and temperature dependences, with a change of behavior observed at about H 1.5T and T 15K. We were able to reconcile