ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze azimuthal anisotropy in heavy ion collisions related to the reaction plane in terms of standard reggeon approach and find that it is nonzero even when the final state interaction is switched off. This effect can be interpreted in terms of partonic structure of colliding nuclei. We use Feynman diagram analysis to describe details of this mechanism. Main qualitative features of the appropriate azimuthal correlations are discussed.
The effects of final state interactions (FSI) in hadronic B-decays are investigated. The model for FSI, based on Regge phenomenology of high-energy hadronic interactions is proposed. It is shown that this model explains the pattern of phases in matri x elements of $Btopipi$ and $Btorhorho$ decays. These phases play an important role for CP-violation in B-decays. The most precise determination of the unitarity triangle angle $alpha$ from $B_dto rhopi$ decays is performed. The relation between CP-asymmetries in $Bto Kpi$ decays is discussed. It is emphasized that the large distance FSI can explain the structure of polarizations of the vector mesons in B-decays and other puzzles like a very large branching ratio of the B-decay to $barXi_cLambda_c$.
Energy dependence of heavy quarkonia production in hadron-nucleus collisions is studied in the framework of the Glauber-Gribov theory. We emphasize a change in the space-time picture of heavy-quark state production on nuclei with energy. Longitudinal ly ordered scattering of a heavy-quark system takes place at low energies, while with increasing energy it transforms to a coherent scattering of projectile partons on the nuclear target. The characteristic energy scale for this transition depends on masses and rapidities of produced particles. For J/psi, produced in the central rapidity region, the transition happens at RHIC energies. The parameter-free calculation of J/psi in dAu collisions is in good agreement with recent RHIC data. We use distributions of gluons in nuclei to predict suppression of heavy quarkonia at LHC.
The search for stable heavy exotic hadrons is a promising way to observe new physics processes at collider experiments. The discovery potential for such particles can be enhanced or suppressed by their interactions with detector material. This paper describes a model for the interactions in matter of stable hadrons containing an exotic quark of charges $pm {1/3}e$ or $pm {2/3}e$ using Regge phenomenology and the Quark Gluon String Model. The influence of such interactions on searches at the LHC is also discussed.
The energy dependence of light and heavy particle production in hadron-nucleus collisions is discussed. Whereas the production mechanism at lower energies can be understood in the Glauber rescattering picture, experimental data at RHIC indicate that particles are mostly produced in coherent processes. The importance of energy-momentum conservation is shown to be crucial at forward rapidities for the whole energy range. We also discuss the behaviour of $alpha (x_F)$ with energy for light particles and $J/psi$. Finally, we make predictions for the future LHC experiment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا