ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we discuss solid-state nanoelectronic realizations of Josephson flux qubits with large tunneling amplitude between the two macroscopic states. The latter can be controlled via the height and wells form of the potential barrier, which is determined by quantum-state engineering of the flux qubit circuit. The simplest circuit of the flux qubit is a superconducting loop interrupted by a Josephson nanoscale tunnel junction. The tunneling amplitude between two macroscopically different states can be essentially increased, by engineering of the qubit circuit, if tunnel junction is replaced by a ScS contact. However, only Josephson tunnel junctions are particularly suitable for large-scale integration circuits and quantum detectors with preset-day technology. To overcome this difficulty we consider here the flux qubit with high-level energy separation between ground and excited states, which consists of a superconducting loop with two low-capacitance Josephson tunnel junctions in series. We demonstrate that for real parameters of resonant superposition between the two macroscopic states the tunneling amplitude can reach values greater than 1K. Analytical results for the tunneling amplitude obtained within semiclassical approximation by instanton technique show good correlation with a numerical solution.
We report on radio-frequency measurements of the charge-phase qubit being under continuous microwave irradiation in the state of weak coupling to a radio-frequency tank circuit. We studied the rf impedance dependence on the two important parameters s uch as power of microwave irradiation whose frequency is close to the gap between the two lowest qubit energy levels, and temperature of the internal heat bath. We have found that backaction effects of the qubit on the rf tank, and vice versa, tank on the qubit, lead to a negative as well as a positive real part of the qubit impedance Re$Z(omega)$ seen by the tank. We have implemented noise spectroscopy measurements for direct impedance readout at the extreme points corresponding to maximum voltage response and obtained absolute values of about 0.017 $Omega$ for the negative and positive Re$Z(omega)$. Our results demonstrate the existence and persistence of the coherent single- and multi-photon Rabi dynamics of the qubit with both negative and positive dynamic resistance inserted into the tank in the temperature range of 10 to 200 mK.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا